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Abstract
Current research on imbalanced data recognises that class imbalance is aggravated by other 
data intrinsic characteristics, among which class overlap stands out as one of the most 
harmful. The combination of these two problems creates a new and difficult scenario for 
classification tasks and has been discussed in several research works over the past two dec-
ades. In this paper, we argue that despite some insightful information can be derived from 
related research, the joint-effect of class overlap and imbalance is still not fully understood, 
and advocate for the need to move towards a unified view of the class overlap problem in 
imbalanced domains. To that end, we start by performing a thorough analysis of existing lit-
erature on the joint-effect of class imbalance and overlap, elaborating on important details 
left undiscussed on the original papers, namely the impact of data domains with different 
characteristics and the behaviour of classifiers with distinct learning biases. This leads to 
the hypothesis that class overlap comprises multiple representations, which are important 
to accurately measure and analyse in order to provide a full characterisation of the prob-
lem. Accordingly, we devise two novel taxonomies, one for class overlap measures and the 
other for class overlap-based approaches, both resonating with the distinct representations 
of class overlap identified. This paper therefore presents a global and unique view on the 
joint-effect of class imbalance and overlap, from precursor work to recent developments in 
the field. It meticulously discusses some concepts taken as implicit in previous research, 
explores new perspectives in light of the limitations found, and presents new ideas that will 
hopefully inspire researchers to move towards a unified view on the problem and the devel-
opment of suitable strategies for imbalanced and overlapped domains.
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1 Introduction

Class imbalance refers to a disproportion in the number of examples belonging to each 
class of a dataset and is known to bias classifiers towards the most represented concepts 
(Fernández et al. 2018a). This situation is especially critical when minority class concepts 
are associated with a higher misclassification cost, such as the diagnosis of rare diseases 
(Santos et al. 2015; Shilaskar et al. 2017). Although this is an important problem in isola-
tion, its combination with other factors creates a much more difficult setting for classi-
fiers, as growing research has brought to light (López et al. 2013; Napierała et al. 2010; 
Stefanowski 2016). These are referred to as data intrinsic characteristics (Fernández et al. 
2018a; López et al. 2013), data difficulty factors (Stefanowski 2016; Wojciechowski and 
Wilk 2017) or data irregularities (Das et al. 2018), and among others, include the problem 
of class overlap.

Class overlap has received much attention in the past two decades, since it is a source of 
complexity for traditional classification paradigms (e.g., max-margin classifiers, Bayesian 
classifiers, decision trees) (Das et al. 2018; Haixiang et al. 2017) and has been observed 
in several application domains (e.g., character recognition Liu 2008, software defect pre-
diction Chen et al. 2018 and protein and drug discovery MacCuish and MacCuish 2010; 
Selvaraj et al. 2018). Indeed, among all data intrinsic characteristics, class overlap has been 
recognised as the most harmful issue for pattern classification (Fernández et  al. 2018e; 
García et al. 2008; Smith et al. 2014) and remains one of the most studied topics nowadays 
(Fu et  al. 2020; Singh et  al. 2020; Vuttipittayamongkol et  al. 2020). Assuming an equal 
representation of classes (i.e., balanced domains), class overlap occurs when regions of the 
data space are populated by a similar number of training examples of each class (López 
et al. 2013; Denil and Trappenberg 2010; Lee and Kim 2018): as classes are equally rep-
resented in the same regions, their discrimination becomes more complicated. In imbal-
anced domains, the problem is aggravated since the few minority examples that exist may 
be mostly located in regions populated by the other class(es) as well.

Over the years, several research works have focused on characterising the combined 
effects of class imbalance and overlap. To that end, researchers created several synthetic 
data domains with different imbalance ratios and overlap degrees. Then, one or several 
classifiers were tested and classification results were evaluated, showing that class imbal-
ance alone cannot be responsible for the deterioration of classification performance, and 
that class overlap plays an important role as well. Therefore, the focus of related work was, 
essentially, to establish class overlap as a difficulty factor for classification tasks, especially 
in the presence of class imbalance. That caused the analysis of other important aspects to 
be neglected to some extent, such as the learning biases of used classifiers and the peculiar-
ities of the considered data domains. In fact, some authors consider only a single classifier 
(García et al. 2006; Denil and Trappenberg 2010; Prati et al. 2004) or similar learning para-
digms (e.g., tree and rule-based classifiers) (Napierała et al. 2010), while the data domains 
are also considerably different among research works. By cross-referencing the obtained 
results across related work, important aspects that remained vague or understudied in pre-
vious research can now be brought to discussion on a deeper level.

In this work, we review the existing literature on the joint-effect of class imbalance and 
overlap, summarising their main conclusions and performing a thorough cross-referenc-
ing of results in order to analyse some details left undiscussed in the original papers. In 
particular, we focus on analysing the effect of the characteristics of studied data domains 
(e.g., data decomposition, structure, dimensionality and data typology) and the behaviour 
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of classifiers with distinct biases (instance-based, rule and tree-based, Bayesian classifiers, 
neural networks, support vector machines and linear discriminants). A cross-reference of 
research results allows the evaluation of classifiers under several conditions (data domains, 
dimensionality, class imbalance and overlap) and effects on classification performance are 
explained from a theoretical (considering the known biases of classifiers) and empirical 
(considering the used data domains and obtained experimental results) perspective. In sum, 
we extend the current body of knowledge on the combination of class imbalance and over-
lap by focusing on the following research topics:

• What is the influence of intrinsic data characteristics (data decomposition, data struc-
ture, data dimensionality, data typology) on the classification performance for imbal-
anced and overlapped domains?

• How do classifiers with different nature (distinct learning biases) handle imbalanced 
and overlapped domains?

The analysis conducted over seminal work yielded important insights regarding the joint-
effect of class imbalance and overlap. First, it allowed to derive some important lessons 
learned regarding the characteristics of the domains and nature of classifiers, two under-
studied topics that remained mostly hidden in related research. Then, it allowed to iden-
tify important limitations regarding the characterisation of class overlap in imbalanced 
domains and ultimately, to the idea that class overlap comprises several representations, 
which need to be quantified and analysed accordingly. On that note, a discussion on iden-
tifiability and quantification of class overlap, especially in real-world domains, arises natu-
rally. We therefore provide a comprehensive review of class overlap measures and establish 
a novel taxonomy that defines distinct groups of measures according to the class overlap 
representations they are able to characterise. We conclude the paper by analysing emergent 
class overlap-based approaches applied to real-world imbalanced domains. It is our intent 
to show that, despite recent work suffers from the same limitations found in seminal work 
in what concerns the characterisation and quantification of class overlap, it is possible to 
associate the underlying behaviour of approaches to the class overlap representations they 
are attentive to. Establishing this association is a step towards the choice and development 
of specialised approaches depending on the characteristics of the domains. We therefore 
devise a taxonomy of class overlap-based approaches aligned with the taxonomy proposed 
for class overlap measures.

Existing surveys mostly provide a bird’s eye view on handling imbalanced data clas-
sification, state-of-the-art methods and applications, and current trends  (Haixiang et  al. 
2017; Kaur et  al. 2019; Krawczyk 2016), although setting aside the study of other diffi-
culty factors embedded in the nature of data. Some also touch upon the definition of data 
characteristics and their impact on classification tasks  (Das et  al. 2018; Fernández et  al. 
2018d); however, without a specific focus on the joint-effect of class imbalance and overlap 
and its synergy with other characteristics of the data domains, different learning biases, 
quantification, or contemporary approaches. Related research in the field of classification 
complexity provides a generic overview of data complexity measures and their use across 
several application areas (Lorena et al. 2019). However, there is no established set of com-
plexity measures for class overlap, as measures are grouped according to their underly-
ing quantification mechanisms (e.g., feature-based, neighbourhood-based), rather than the 
insight they provide on the domain (e.g., feature overlap, instance overlap, structural over-
lap). Several recent measures linked to the class overlap problem are also comprised in an 
extra-category instead of thoroughly reviewed, as the main complexity measures described 
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refer to those proposed by Ho and Basu on their pioneer work on the topic (Ho and Basu 
2002). There is also no discussion in what concerns the adaptation of existing measures to 
imbalanced domains. The most related research is perhaps the recent review by Vuttipittay-
amongkol et al. (2020), which also discusses some emergent class overlap-based methods 
in imbalanced domains. However, no considerations regarding a taxonomy of methods or 
representations of class overlap are given. Of note is that authors also agree with the need 
of a well-established definition and measurement of class overlap and a standard measure 
for the class overlap degree in real-world domains, meeting our line of thought. What we 
put forward with this research is precisely a first step towards a consensus of the research 
community on this matter.

Contrary to previous works, this paper focuses on a critical analysis on the problem of 
class overlap in imbalanced domains, as it is considered the most harmful issue among data 
difficulty factors (Fernández et al. 2018e). It focus specifically on the interrelations of class 
imbalance and overlap and their joint-effect on classification performance, considering two 
other influential factors often neglected in related research: the characteristics of the data 
domains, and the nature of classifiers. Additionally, more than providing a comprehensive 
review of related work in the field, this work presents an in-depth conceptual discussion 
of key concepts, scrutinising some of the assumptions and insights from previous work 
and their implications for real-world domains. What follows is a conceptualisation of class 
overlap as a heterogeneous concept, comprising multiple sources of complexity, and a the-
oretical evaluation of its challenging aspects for imbalanced domains. We also present a 
critical discussion on both (1) the identifiability and quantification of class overlap in real-
world contexts and (2) the state-of-the-art methods to handle the problem in imbalanced 
data contexts.

In sum, we provide a global and unique vision on the joint-effect of class imbalance and 
overlap, identifying existing theoretical and empirical limitations in previous and current 
research, and discussing new ideas that advocate towards a unified view on the problem. 
In detail, the contributions of this work are as follows: (1) a revision of related work on 
the joint-effect of class imbalance and overlap; (2) a discussion of the impact of intrinsic 
data characteristics in synergy with class imbalance and overlap; (3) an overview of the 
joint-effect of class overlap and imbalance on the performance of classifiers with different 
learning biases; (iv) a motivation for the characterisation of class overlap according to dif-
ferent perspectives and a discussion of distinct class overlap representations; (v) a review 
of measures of class overlap and a taxonomy aligned with its different representations; (vi) 
a review of the state-of-the-art approaches for imbalanced and overlapped domains and 
a taxonomy that resonates with the identified class overlap representations; and (vii) the 
identification of limitations of previous and current research and a motivation for a unified 
view of the class overlap problem in imbalanced domains.

To our knowledge, this work provides the most comprehensive review on the subject, 
from seminal work to emergent research. More importantly, this is the first work to put for-
ward that class overlap observes a multitude of representations and systematises both class 
overlap measures and approaches towards that characterisation.

The reader should navigate this paper as follows. Section 2 reviews seminal work on 
class imbalance and overlap, describing the experiments and data domains in detail and 
elaborating on their main conclusions. Then, Sects.  3 and 4 discuss the lessons learned 
with respect to the impact of the characteristics of the data domains and the learning biases 
of distinct classifiers, respectively. While Sect. 3 hints at distinct representations of class 
overlap, Sect. 4 reinforces the idea that linking the behaviour of classifiers to the character-
isation of domains would prove transformative to future research in the field. In Sect. 5, we 
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detail the limitations found in seminal work on synthetic data and discuss why they prevent 
a full understanding of the joint-effect of class overlap and imbalance, while also motivat-
ing the need to revise existing solutions for real-world domains. Hence, Sects. 6 and 7 are 
focused on revising class overlap measures and class overlap-based approaches applied to 
real-world imbalanced domains. We start both sections by presenting a global view on the 
topic and introducing our proposed taxonomies with supporting schemas. Then, class over-
lap measures are described, formalised, and illustrated in detail, and class overlap-based 
approaches are presented, respectively, both divided by category. At the end of each sec-
tion we present our summarising comments, discussing the most important limitations and 
open challenges for research. Finally, Sect. 8 summarises future directions that the research 
community should debate for a renewed view on the joint-effect of class overlap and imbal-
ance, hopefully leading to new breakthroughs in the field, whereas Sect. 9 ends the paper, 
providing an overview of the main topics discussed throughout this work.

2  On the joint‑effect of class imbalance and overlap

In this section, we review the existing literature on the joint-effect of class imbalance and 
overlap. To help the reader navigate this section, Table 1 presents the related work in chron-
ological order, focusing on their objectives, characterisation of data domains, experimen-
tal design (controlled parameters and studied classifiers), and main conclusions. In what 
follows, we discuss the related research, showing how the co-occurrence of class imbal-
ance and overlap poses a more difficult problem that solving each issue independently. We 
focus on the global insights regarding the joint-effect of class imbalance and overlap rather 
than the details of each research work. In Sects. 3 and 4, we will elaborate on the lessons 
learned in what concerns the characteristics of the studied domains and classifiers.

Prati et al. (2004) experimented with several variations of class imbalance and overlap 
by studying two Gaussian clusters where the distribution of minority and majority exam-
ples, as well as the distance between cluster centroids, could be changed (Fig. 1). Authors 
showed that when the distance between class centroids was zero, the classification was 
extremely difficult, independently of the considered class imbalance. Conversely, as the 
distance between class centroids increased, the class overlap problem ceased to exist and 
the classification results were high, independently of the percentage of minority examples.

García et  al. (2006) studied the combined effects of these two problems on instance-
based classification algorithms (1-nearest neighbour classifier). Authors used artificial 
domains composed of two squares, each having a uniform distribution of points from the 
majority and minority classes, respectively (Fig.  1). Whereas the class imbalance was 
fixed, the class overlap was manipulated through the distance between square centres, i.e., 
the majority class was moved towards the minority class in a stepwise manner (as per the 
original paper, we will refer to this configuration as a “typical situation”). While the clas-
sification results were maximal when there was no class overlap, the performance degraded 
as the overlap increased.

In García et al. (2007a, 2007b), in addition to typical situations, García et al. focused 
on a particular imbalanced scenario where the minority class was more represented than 
the majority class in the overlap region (considered an “atypical situation”, as shown in 
Fig. 1). In this case, the local class imbalance (in the overlap region) was different from 
the global class imbalance (in the entire domain). Authors considered several classification 
paradigms (please refer to Table 1) and showed that in typical situations, the classification 
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performance of all classifiers on the minority class degraded with increasing class overlap. 
However, local classifiers were more suited to the recognition of the minority class, while 
global classifiers performed better on the majority class. In atypical situations, classifiers 
with a global nature benefited the recognition of the minority class, while local classifiers 
were better for the majority class.

In García et al. (2008), García et al. further focused on the performance of KNN classi-
fier (varying the value of k) versus the performance of other classifiers (Table 1) in typical 
and atypical situations, aiming to explain the influence of overall imbalance, local imbal-
ance and the size of the overlap region on the behaviour of KNN classifier. In typical 
situations, smaller values of k were more suited to the recognition of the minority class, 
whereas higher values benefited the recognition of majority class examples. In turn, for 
atypical situations, the increase of k benefited the minority class and no significant changes 
occurred in the performance of the majority class, showing that KNN was more depend-
ent on the local imbalance than on the global imbalance. When the overlap region was not 
balanced, the local imbalance ratio was more important than the size of the overlap region 
for KNN performance. Finally, for similar configurations of class imbalance and overlap, 
authors found that the complexity of the boundary decision was yet another difficulty factor 
for classifiers (García et al. 2008).

Denil and Trappenberg (2010) studied the joint-effect of class imbalance and overlap 
on the performance of Support Vector Machines (SVM) by varying factors individually 
and simultaneously for different training set sizes (Fig. 1). For small training set sizes, as 
well as for small amounts of overlap and imbalance, the performance of SVM assuming 
that these factors are independent was similar to the one obtained from their combination. 
As the training set size increased, the influence of class imbalance was negligible and class 
overlap was the main responsible for the performance degradation. Thus, assuming that 
both factors were independent, the performance results obtained for large training sets 
in the presence of overlap alone should have been similar to the performance when both 
factors were present in data. However, the performance was even lower, indicating that 
the issues were far more serious in combination that in isolation (Denil and Trappenberg 
2010).

Related work on the joint-impact of class overlap and imbalance also includes the 
research of Napierała et  al. (2010), Stefanowski (2013), and Wojciechowski and Wilk 
(2017). Rather than considering overlap regions or areas, the focus shifted to the data 
typology of the minority class (i.e., considering different types of data examples) to 
approximate certain difficulty factors, such as class overlap. Class overlap was approxi-
mated by focusing on borderline examples, as they are highly related to the problem of 
class overlap (i.e., they appear in the borderline between classes). Overall, authors studied 
the influence of disturbing the minority class boundaries by adding an increasing number 

Fig. 1  Artificial domains considered in related work. The red circles represent the majority class examples 
(MAJ) while the blue crosses represent the minority class examples (MIN). Prati et al. (2004) defined class 
overlap as the distance between cluster centroids of different classes. García et  al. (2006, 2007a, 2007b, 
2008) considered both typical and atypical configurations where class examples were distributed over 
squares of the same size. In typical domains, class overlap may either be determined as a fraction of the 
area that is overlapped over the total minority area, or over the total majority area. For atypical domains, 
class overlap was not quantified numerically. Denil and Trappenberg (2010) divided the domains into four 
equal regions with alternating class memberships. Class overlap was captured by the extent to which adja-
cent regions intertwined. Napierała et al. (2010), Stefanowski (2013, 2016), and Wojciechowski and Wilk 
(2017) defined paw, clover/flower and subclus domains with increasing amounts of borderline minority 
examples (BORDER), represented by the black stars. Mercier et al. (2018) reproduced several artificial data 
domains considered in previous works. (Color figure online)

▸
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of borderline examples to domains with different characteristics—paw, clover/flower and 
subclus domains (Fig. 1). Napierała et al. (2010) showed that increasing the number of bor-
derline examples highly degraded the performance of classifiers. Stefanowski (2013, 2016) 
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focused on the subclus dataset and studied the impact of changing the number of subclus-
ters (class decomposition), changing the percentage of borderline minority examples (class 
overlap) and changing the imbalance ratio. Experiments showed that the combination of 
class decomposition and overlap seemed to affect classification performance more than 
the increase of the imbalance ratio, and that for non-linear shapes the performance deg-
radation was more accentuated. Wojciechowski and Wilk (2017) further showed that data 
typology significantly affected the classification results more than class imbalance or data 
dimensionality.

Finally, Mercier et  al. (2018) reproduced several artificial data domains considered 
in previous works and analysed the performance degradation of classifiers with different 
learning biases (please refer to Table 1). Classifiers that learn on the basis of data space 
fragmentation were less affected by class overlap than linear classifiers (further details will 
be given throughout Sect. 4).

According to the key insights of the discussed research, the following conclusions can 
be established:

• Class overlap acts as a difficulty factor for classification, more than class imbalance. 
Indeed, although the class imbalance generally deteriorates the performance of classi-
fiers, if there are no other complex data characteristics, then the class imbalance itself 
does not affect classification, regardless of the imbalance ratio (Prati et al. 2004; García 
et al. 2006);

• These two problems do not have independent effects and the degradation caused by 
their combination is not equivalent to the aggregation of the degradation caused by 
each one individually (Denil and Trappenberg 2010). Class overlap and imbalance have 
hidden dependencies that are not noticeable by analysing them separately;

• The joint-effect of class imbalance and overlap strongly depends on the nature of classi-
fiers, the general characteristics of the domain (class decomposition, data dimensional-
ity, complexity of the decision boundaries) and on the local characteristics of the over-
lap region (local imbalance and data typology) (García et al. 2008; Mercier et al. 2018; 
Wojciechowski and Wilk 2017).

In the following sections, we will detail the lessons learned in what concerns the char-
acteristics of the studied domains and classifiers. The provided analysis is supported by 
a thorough examination of experimental results obtained in related research, which were 
aggregated by data domain and classifier.1

3  Lessons learned on the characteristics of the data domains

From the analysis of related research, three main factors seem influential in synergy with 
class imbalance and overlap: local data characteristics, data structure and data dimension-
ality. We tackle each component independently to provide a summary of the most relevant 
findings and stress their significance.

1 The reader may find supporting information in the supplementary material online at https:// stude nt. dei. uc. 
pt/ ~miria ms/ pdf- files/ AIR_ 2021_ Appen dix. pdf.

https://student.dei.uc.pt/%7emiriams/pdf-files/AIR_2021_Appendix.pdf
https://student.dei.uc.pt/%7emiriams/pdf-files/AIR_2021_Appendix.pdf
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3.1  Local data characteristics: local imbalance and data typology

In related work, the combination of class imbalance and overlap has different effects on 
the performance of classifiers, depending on the characteristics of the overlap region. In 
particular, the local imbalance in the overlap region is one of the most impactful factors 
(García et al. 2007a, b, 2008):

• When the class imbalance in the overlap region is the same as the global imbalance, 
classifiers with a more global nature tend to misclassify the minority examples as 
classes overlap, thus prioritising the majority class. Conversely, classifiers with a 
local nature make a decision regarding the class of examples based on their local 
neighbourhood, thus avoiding the bias towards majority concepts;

• When the minority class is dominant in the region of overlap, classifiers based on a 
more global learning obtain better results on the minority examples while more local 
classifiers work better for the majority class.

In sum, more global classifiers are able to better recognise the class more represented in 
the overlap region, whereas local classifiers perform better on the less represented class 
(García et al. 2008). Note, however, that the dominance of a given class in the region of 
overlap illustrates a type of distribution skew (Das et al. 2018). In these situations, the 
results can be quite different from what is expected in standard imbalanced domains, 
such as the minority class obtaining better performance than the majority class (in the 
case of binary-classification problems), if the minority class is more represented in the 
overlap region. In the scenarios discussed in related work (atypical situations), the dis-
tribution skew is due to the local imbalance in the overlap region. However, distribution 
skews may arise irrespective of the class imbalance in the domain, e.g., they can be due 
to the data distribution/sparsity in the overlap region. They are, however, intrinsically 
related to the overlap between classes, and may give rise to particular representations of 
the problem, where the local characterisation of data is fundamental to fully understand 
the type of degradation created.

Data typology is also identified as one of the most important factors affecting classi-
fication performance in imbalanced and overlapped domains. The term “data typology” 
corresponds to a neighbourhood-based categorisation of examples into different types. 
Currently, four main categories are established and followed in recent works: safe, bor-
derline, rare, and outlier examples (Napierala and Stefanowski 2016). It should be noted 
that although related work emphasises the number of minority borderline examples as 
relating to the problem of class overlap, other types of examples can also contribute to 
the whole overlap (e.g., non-safe examples, such as rare examples or outliers). With 
respect to data typology, the following insights may be derived:

• Data typology assumes a more influential role on the difficulty of classification tasks 
than class imbalance or data dimensionality (Wojciechowski and Wilk 2017);

• Increasing the number of borderline minority examples has shown to severely jeop-
ardise the classification performance (Stefanowski 2013; Wojciechowski and Wilk 
2017), especially exacerbating the deterioration of tree and rule-based classifiers 
(Napierała et al. 2010).
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Overall, related research has systematically demonstrated that it is important to take the 
internal characteristics of the domains into consideration when studying the joint-effect of 
class imbalance and overlap. Herein, we highlight the importance of the local data charac-
teristics in what concerns the existence of class distribution skews and different types of 
examples comprised in data. In fact, we acknowledge them as vortices of class overlap, i.e., 
existing representations of class overlap, as will be further discussed in Sect. 6.

3.2  Data structure: non‑linear class boundaries and class decomposition

Let us first define the overall understanding of “data structure” taken in this paper. We 
treat the concepts of data structure, data shape and data morphology interchangeably. With 
these terms we refer to the structural properties of the data that comprise their form, the 
complexity of decision boundaries, and existing class decomposition. As an example, arti-
ficial domains in related work such as clusters (Prati et  al. 2004), squares (García et  al. 
2008), paw, clover/flower, and subclus all possess different data structures, i.e., different 
morphologies, shapes, class decomposition, and class boundaries of different difficulty 
(Fig. 1). To this regard, the following observations should be highlighted:

• More complex shapes are harder to learn, independently of the class imbalance and 
overlap characteristics. Under the same configuration of class overlap and imbalance, 
the classification performance has shown to be affected by the characteristics of the 
decision boundaries (e.g., squares versus concentric circles García et al. 2008);

• Domains presenting a complicated class decomposition are more difficult to handle: 
subclus domains are generally easier to learn than paw, which in turn are easier to learn 
than clover/flower domains;

• Tree and rule-based classifiers are especially affected by non-linear decision bounda-
ries, whereas classifiers with other learning paradigms (KNN and SVM with a RBF 
kernel) do not seem as critically affected. Linear classifiers (FLD and SVM with linear 
kernel) are strongly affected by the data structure, with FLD often misclassifying all 
minority examples, irrespective of other factors (class imbalance, class decomposition, 
and dimensionality);

• The combination of complicated class decomposition and class overlap is more impact-
ful for classification performance than the class imbalance for tree and rule-based 
classifiers, and KNN (Stefanowski 2013). However, the effect of class overlap seems 
stronger than increasing class decomposition. This effect is especially critical for 
smaller datasets or non-linear class boundaries (Stefanowski 2013).

Complex data structures pose difficult challenges for classifiers, irrespective of other fac-
tors such as class overlap and imbalance. However, when occurring together with class 
overlap and imbalance, data structure acts as an exacerbator of a complex problem in itself, 
amplifying the deterioration of classification performance. Non-linear decision boundaries 
require classifiers with a more local-based learning or kernel adaptations. In turn, class 
decomposition further relates to the problem of small disjuncts and the ability of classifiers 
to derive general or specialised rules (Japkowicz 2001). It is therefore important to take 
these internal data characteristics into consideration when defining appropriate solutions 
for the identification and quantification of class overlap. This is especially true for real-
world imbalanced domains, where the underlying class distributions and the number and 
structure of class concepts are unknown and difficult to discover or approximate.
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3.3  Data dimensionality

Although some research has focused on developing appropriate methods for dimension-
ality reduction in imbalanced domains (Fernández et al. 2018c), the combination of data 
dimensionality with other data characteristics has received very little attention in the litera-
ture. With respect to class overlap, since the majority of related work focuses on 2-dimen-
sional domains, conclusions regarding data dimensionality are based on the research of 
Wojciechowski and Wilk (2017), and Mercier et al. (2018):

• Overall, performance results improve with higher dimensionality. Additionally, increas-
ing the class imbalance and class overlap seems to have a limited impact on the clas-
sification results;

• For domains with more complex data typology (i.e., not just increasing borderline 
examples but also rare and outlier examples), increasing the data dimensionality ben-
efited the recognition of the minority class (Wojciechowski and Wilk 2017).

Class overlap seems to disappear as the dimensionality grows, which to some extent is 
related to changes in the data density for higher domains. If the total number of data exam-
ples is fixed, there will be a decrease of the data density as the dimensionality increases. 
For the domains studied in Mercier et al. (2018), Wojciechowski and Wilk (2017) (subclus, 
paw and clover/flower domains), the majority class is especially affected, as it becomes 
sparser very rapidly. Consider for instance the paw domains, depicted in Fig. 1. There are 
3 well-defined minority class clusters (ellipsis) surrounded by an integumental space of the 
majority examples scattered across the remaining space. For higher dimensions, the minor-
ity clusters turn into hyper-ellipsis that become denser in comparison to the volume of 
the majority hyper-rectangle, thus improving class separability (Wojciechowski and Wilk 
2017).

To this point, there is not much research on the evaluation of data dimensionality on 
imbalanced and overlapped domains. For instance, it remains unclear what would be the 
effects of dimensionality reduction techniques on the neighbourhood of data examples and 
consequently on their data typology and classification performance. For domains simulta-
neously affected by class overlap and imbalanced, feature selection is also an understudied 
topic, although some research has begun to shed some light on the subject (Barella et al. 
2021; Costa et al. 2020; Rivolli et al. 2018). These topics currently constitute open chal-
lenges for research.

4  Lessons learned on the nature of classifiers

Throughout related research, few works analyse the behaviour of classifiers beyond a com-
parison of classification performance results:

• In García et al. (2008), authors distinguish between local (KNN) and global classifiers 
(MLP, NB, RBF, C4.5) and conclude that the performance of classifiers is related with 
the local imbalance of data in the overlap region, showing that a more local behav-
iour benefits the underrepresented concepts. Such behaviour is usually portrayed by 
instance-based classifiers, such as 1NN;
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• In Wojciechowski and Wilk (2017), classifiers are divided into symbolic (C4.5 and 
PART) and non-symbolic (KNN, NB, RBF, SVM). Symbolic classifiers lagged behind 
non-symbolic classifiers, although this may be due to the more extensive parametrisa-
tion of some non-symbolic classifiers (KNN and SVM performing the best);

• In Mercier et al. (2018), the performance degradation is associated with the learning 
paradigm of each classifier. Classifiers that work on the basis of data space fragmenta-
tion (CART, MLP, and KNN) seem less affected by class overlap, whereas linear classi-
fiers (FLD and SVM-linear) perform the worst.

Understanding how the joint-effect of class overlap and imbalance (as well as data charac-
teristics) affects the performance of each classifier is a step towards the definition of ade-
quate strategies to handle the problems simultaneously. Overall, related work has shown 
that major differences between the performance of classifiers rely on their ability to pro-
vide specialised decisions, where local learning paradigms have shown to be better suited 
to several sources of complexity, such as distributions skews, difficult data typologies, and 
complex data structures:

• Among all families of classifiers, instance-based classifiers (KNN) have shown to 
be the most resilient to changes in class imbalance and overlap. Throughout related 
research, KNN was able to achieve good results even for difficult situations charac-
terised by class distributions skews (García et  al. 2008), and complex data typology 
(Wojciechowski and Wilk 2017). Its sensitivity to changes in local imbalance, and flex-
ibility for complex data structures, turn it into a simple, yet efficient, approach to study 
the combination of class imbalance and overlap;

• Other classifiers have also shown to be adequate choices to handle issues simultane-
ously. RBF networks and SVM with RBF kernel have shown to be robust to distri-
butions skews and difficult data types, as well as more complex shapes. Conversely, 
NB, although showing a high tolerance to class overlap and performing successfully in 
distribution skews and complex domains, is somewhat affected by class imbalance and 
difficult data types (García et al. 2008; Mercier et al. 2018; Wojciechowski and Wilk 
2017);

• Linear classifiers, and rule and tree-based classifiers obtained lower performance 
results, presenting some limitations under several sources of complexity.

In what follows, we will focus on distinct families of classifiers and their learning para-
digms, aiming to provide an overview of their behaviour under imbalanced and overlapped 
domains. In that sense, we consider four main families: Instance-Based Classifiers, Rule 
and Tree-Based Classifiers, Bayesian Classifiers, Neural Networks, and Support Vector 
Machines and Linear Discriminants. For each family of classifiers we highlight the most 
important findings from related work.2

2 The interested reader may find detailed information on the performance of each classifier in the supple-
mentary material provided online at https:// stude nt. dei. uc. pt/ ~miria ms/ pdf- files/ AIR_ 2021_ Appen dix. pdf.

https://student.dei.uc.pt/%7emiriams/pdf-files/AIR_2021_Appendix.pdf
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Instance-Based Classifiers (KNN)

• As KNN presents a local nature, it effectively addresses regions with different local 
data densities, i.e., it does not present the general bias towards the most represented 
class as most global classifiers;

• Smaller values of k guarantee its local nature and allow a more successful recogni-
tion of less represented concepts in the overlap region. In turn, for larger values of k, 
KNN approaches the behaviour of more global classifiers, which benefits the more 
represented concepts in that region (García et al. 2008);

• Considering higher values k has also proven beneficial for the recognition of the 
minority class when the number of borderline minority points in the overlap region 
increases (Wojciechowski and Wilk 2017);

• The local behaviour of KNN is also advantageous for more complex data structures 
(non-linear shapes), where KNN is among the top performers, irrespective of the 
class imbalance and class decomposition (Mercier et  al. 2018; Stefanowski 2013; 
Wojciechowski and Wilk 2017).

Rule and Tree Classifiers (C4.5, CART, PART, MODLEM)

• Class overlap highly degrades the performance of rule and tree-based classifiers, 
more than class decomposition (Napierała et al. 2010; Stefanowski 2013). Addition-
ally, a faster performance deterioration is observed for more complex non-linear 
shapes;

• MODLEM outperforms C4.5 when compared under the same conditions (border-
line minority examples, class decomposition and imbalance ratio) (Napierała et al. 
2010). Also, CART outperforms C4.5 even for higher percentages of minority bor-
derline examples and imbalance ratios (Mercier et al. 2018; Napierała et al. 2010). 
We hypothesise that this difference may be due to the splitting criteria;

• Both pruned and unpruned versions of C4.5 and PART obtain nearly the same 
results for the same amount of class overlap (borderline examples), although for 
more difficult types of examples (rare and outlier examples), unpruned versions gen-
erally perform better (Wojciechowski and Wilk 2017).

Bayesian Classifiers (NB)

• NB has performs successfully for both typical and atypical domains (García et al. 
2008) and more complex data shapes (Mercier et al. 2018; Wojciechowski and Wilk 
2017);

• In Wojciechowski and Wilk (2017), although NB is successful in classifying data-
sets with increasing amounts of borderline minority examples, it performs poorly 
for more difficult types (rare and outlier examples);

Neural Networks (RBF, MLP)

• For typical and atypical domains (García et al. 2008), RBF and MLP obtain similar 
results. However, for more complex shapes (atypical concentric circles), MLP fails 
to recognise all minority examples whereas RBF network provides similar results 
to atypical domains. This difference may reside on the activation function of each 
network. MLP uses a sigmoid activation function, whereas RBF uses a Gaussian 
activation function, which makes neurons more locally sensitive (Jain et al. 2000).

• RBF also shows a good performance for paw and clover/flower domains, being 
among the top performers (Wojciechowski and Wilk 2017). MLP handles clover/
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flower domains better than subclus domains, although the former shape is consid-
ered more complex (Mercier et al. 2018). We hypothesise that this could be due 
to the fact that clover/flower is a unified shape: the subregions are connected and 
have similar densities. In turn, subclus has 5 disconnected subregions with differ-
ent densities. For MLP, learning five decision boundaries with different densities 
seems more difficult than to learn a single (although complex) decision boundary 
with an even representation of points among subregions. For subclus domains, 
class overlap seems to affect MLP classification performance more than class 
imbalance, whereas for clover/flower, class imbalance seems the most prejudicial 
(Mercier et al. 2018);

Support Vector Machines and Linear Discriminants (SVM and FLD)

• SVM is more deeply affected by class overlap than class imbalance, although the 
combination of both problems is even more costly (Denil and Trappenberg 2010). 
SVM further exhibits a breaking point occurring when nearly half of the domain 
is overlapped and the imbalance ratio in the overlap region approaches a balanced 
scenario (Denil and Trappenberg 2010; García et al. 2008);

• In Mercier et al. (2018); Wojciechowski and Wilk (2017), SVM shows a competi-
tive performance for increasing amounts of borderline minority examples. The 
good behaviour of SVM is associated with the tuning of hyperparameters per-
formed.

• Both linear SVM and FLD are extremely affected by the structure of data. In 
particular, FLD fails to classify any minority examples for domains with non-
linear decision boundaries, although it performs reasonably well for more simple 
shapes (typical square domains or cluster domains) (Mercier et  al. 2018). FLD 
aims to find a projection onto a line (one-dimensional space) where classes are 
well separated, which for non-linear class boundaries is extremely difficult;

• Contrarily to the remaining classifiers, the increase of data dimensionality does 
not seem to improve FLD in the classification of non-linear decision boundaries. 
Although the generation of overlap in higher dimensions increases concept sepa-
rability, the projections performed by FLD remain compromised.

With respect to the top performing classifiers, note how the hyperparametrisation plays 
a vital role, especially with the use of Gaussian kernels. Although KNN, SVM-RBF 
and RBF networks are based on different learning paradigms, by using Gaussian ker-
nels, SVM-RBF and RBF can approximate the local behaviour of KNN, depending on 
the chosen hyperparameters. Hyperparametrisation can help solving issues simultane-
ously by defining appropriate parameters depending on the characteristics of data. As an 
example, different parametrisations of KNN could be used to solve successfully domains 
with distribution skews for all classes, by choosing smaller values of k in regions where 
a given class is sparse or less represented and larger values when a class is dense or 
well-represented in overlapping regions. The same can be derived for kernel parameters.

This remains an understudied topic in imbalanced and overlapped domains and is cur-
rently an open direction for future research. The main idea is that attending to the bias of 
classifiers and the representation of class overlap in the domain, one can establish appro-
priate strategies to improve classifiers individually (as is the case of improving parametri-
sation for different regions) or combining local and global classifiers to achieve improved 
performance (e.g., via ensemble learning, where the choice of individual classifiers 
may be tailored to the characteristics of the data domains). Naturally, this requires a full 
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characterisation of the overlap problem in imbalanced domains, which to this point is not 
a well-established topic in the literature, as we will further detail in the following section.

5  Limitations of seminal research

Despite related research provides interesting findings, as discussed throughout the previous 
sections, there is still a long way to go before extrapolating insights for real-world domains. 
Indeed, related research has the following limitations:

• All research works consider artificially generated data domains, where class overlap, 
class imbalance, data typology, class decomposition, local data densities, and data 
dimensionality are defined apriori;

• Not all aspects are studied across all research works: class decomposition and data 
dimensionality are understudied. Also, authors often neglect scenarios of extreme 
imbalance;

• Experiments are confined to well defined shapes (e.g., squares or clusters of data), 
with little minority class decomposition (maximum of 5 subregions for clover/flower 
and subclus domains), a regular majority class representation (an integumental region, 
without class decomposition) and small data dimensionality (most works are limited to 
2-dimensional domains);

Naturally, control over these parameters allows a better understanding of the generated 
domains and consequently a more precise evaluation of obtained results. Also, the insights 
provided over synthetic data lay the foundation for the interpretation of results over real-
world domains, and respective investigation of specialised approaches. This was the ration-
ale behind the thorough analysis of previous research that culminated in the insights sum-
marised in Sects.  3 and 4. To this regard, the conclusions derived previously are to be 
taken as a global view on the peculiarities of the data domains and footprints of classifiers, 
showing that the combination of class imbalance and overlap may give rise to a multitude 
of scenarios, each presenting its own implications for classification tasks in general, and 
classification paradigms in particular. Nevertheless, generalisation for real-world datasets 
requires further investigation and it is important to discuss some open issues that prevent 
that more profound conclusions are derived:

Class overlap is not mathematically well-established:
Throughout related research, there is no standard measurement of the overlap degree. 
Hence, class overlap is measured in rather distinct ways. Prati et  al. (2004) measure 
class overlap as the distance between cluster centroids, which does not reveal the exact 
degree of overlap in each configuration. Similarly, the research of García et al. (2006, 
2007a, 2007b, 2008) lacks a formulation of the overlap degree. Given the simplicity 
of typical domains, one may infer that the degree of overlap can either be determined 
as a fraction of the area that is overlapped over the total minority area, or over the total 
majority area. However, for atypical situations, the notion of overlap degree gets rather 
lost (no percentages or any other values are presented for the overlap degree) and the 
results need to be evaluated considering the local imbalance combined with the size of 
the overlap region, instead of evaluating an exact measure of class overlap. Furthermore, 
these methods of estimating class overlap do not generalise for different data structures 
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(e.g., non-geometrical shapes) or for a higher number of dimensions, frequently found 
in real-world domains. Although it may seem an intuitive concept, to this point there 
is not a well-established mathematical definition for class overlap (Vuttipittayamongkol 
et al. 2020). This may be due to the fact that, as the literature progresses, several con-
cepts associated with class overlap have been brought to light, leading to the discussion 
of distinct representations of the problem.
Class overlap assumes different representations:
In related work, class overlap is often associated to different concepts, that ultimately 
result in its characterisation according to different representations. Class overlap is 
often associated to concepts such as class separability (distance between cluster cen-
troids Prati et al. 2004), overlapping regions or areas (García et al. 2006, 2007a, b; Denil 
and Trappenberg 2010), structural biases such as distribution skews (local imbalance in 
overlapping regions) (García et al. 2008), complex structures (class decomposition, data 
sparsity Napierała et al. 2010; Stefanowski 2013; Wojciechowski and Wilk 2017), data 
typology (via borderline examples Napierała et al. 2010), and the discriminative power 
of features (data dimensionality Mercier et  al. 2018; Wojciechowski and Wilk 2017). 
These representations of class overlap are assessed differently (e.g., distance between 
concepts, percentage of overlapped area, combination of local imbalance with size of 
overlap region, percentage of borderline examples), which complicates the compari-
son of results among related work. Also, except for data typology, the used measures 
for the assessment of other overlap representations are not generalisable for real-world 
domains. Identifying and quantifying class overlap becomes a more strenuous task if it 
has different representations. Different representations of class overlap are associated 
with different insights regarding the domain and represent different sources of degrada-
tion. However, to this point, no study in the literature refers to this issue. What is more, 
studying class overlap without measuring it clearly (not to mention without attending to 
its different representations) may prevent meaningful insights from being derived: gen-
eral conclusions can be obtained (i.e., with respect to the overall effect of class overlap), 
but it is not possible to extract more specific guidelines for future developments in the 
field.
The class overlap degree does not take other factors into account:
Prati et  al. (2004) control class overlap as a distance between clusters centroids, 
although it does not take into account the data sparsity in the overlap region, which 
conditions the number of examples that effectively contribute to class overlap. Similarly, 
when García et al. (2008) measure class overlap as a percentage of overlapped area, the 
distribution of examples within the overlapping area is not considered. For instance, two 
typical domains with different global class imbalance may have the same overlap area, 
although the number of data examples in the overlap region is different. If we were to 
consider atypical domains, the issue is even more clear. Note how both a typical and 
atypical situation may have the same overlap area, although they refer to two very dis-
tinct situations in terms of class overlap and associated difficulty for classification tasks. 
Furthermore, recall that in related work, atypical situations do not have an associated 
measure. As discussed in Sect. 3, the local properties of data are important to character-
ise the degradation that the class overlap produces. To this regard, situations presenting 
class skews (generated by data distribution/sparsity, or local imbalance) are important to 
acknowledge when producing an overlap measure. Napierała et al. (2010), Stefanowski 
(2013, 2016), and Wojciechowski and Wilk (2017) consider the local characteristics of 
data by associating class overlap to the percentage of borderline minority examples in 
the domain. Nevertheless, depending on how they are distributed, two domains with 
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the same percentage of borderline minority examples may affect the classification tasks 
differently. In addition, despite borderline examples are highly related to the problem 
of class overlap (closer to class boundaries), other examples scattered throughout the 
domain may also contribute to class overlap.

Due to these limitations, we argue that the joint-effect of class overlap and imbalance is 
still not fully characterised. One may argue that, since seminal work on this topic, other 
approaches have been attempted to define a more accurate characterisation of domains and 
its relation with classification performance. A natural question therefore arises: “Moving 
past seminal work, how is the combination of class imbalance and overlap currently han-
dled in real-world domains?” To shed some light on this matter, the following sections 
elaborate on two important aspects. One is the identification and quantification of class 
imbalance and overlap, whereas the other is the devise of suitable techniques to overcome 
these issues simultaneously (both focusing on real-world domains). We therefore provide 
a comprehensive analysis of measures to characterise class imbalance and class overlap 
(Sect. 6), and a thorough overview of the state-of-the-art class overlap-based approaches 
used in imbalanced domains (Sect. 7). We will show that, despite the recent developments 
in the field, the measures and approaches devised for real-world domains still suffer from 
similar limitations as previous research on synthetic data. This will be made clear through-
out the following sections, motivating our claim regarding the need to move towards a uni-
fied view of the class overlap problem in imbalanced domains.

6  A taxonomy of class overlap measures

Throughout the years, class imbalance has been consistently estimated by considering the 
number of examples of each class and computing the Imbalance Ratio (IR), such as IR = 2 
or IR = 2 ∶ 1 (Eq.  1), or determining the percentage of minority class examples in the 
domain (Eq. 2) (note that we are focusing on binary-classification problems for simplicity, 
extensions for multi-class domains can be found in Lorena et al. 2019). Other definitions 
of class imbalance can be found in Lorena et  al. (2012) (Entropy of Class Proportions), 
Smith et al. (2014) (Minority Value and Class Balance), and Mercier et al. (2018) (degIR). 
These measures are, however, only discussed within the respective papers, whereas IR 
and Minority (%) represent the formal, well-established definitions accepted in the field 
(Fernández et al. 2018d).

where |Cmaj| and |Cmaj| represent the number of majority and minority examples in the 
domain, respectively.

where N represents the total number of examples in data.
On the contrary, estimating class overlap is a more complicated task, given that it com-

prises several representations, as discussed in Sect. 3. Indeed, certain intrinsic characteris-
tics of data (class imbalance, local imbalance, data typology, non-linear boundaries, class 

(1)IR =
|Cmaj|
|Cmin|

,

(2)Minority (%) =
|Cmin|
N

× 100,
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decomposition, data dimensionality) may give rise to different facets and degrees of over-
lap. Before focusing on specific measures and approaches, let us discuss some situations to 
clarify the idea that class overlap may comprise different representations and that the over-
lap degree may be affected by other factors, namely class imbalance. Herein we will briefly 
refer to some measures of class overlap to discuss this issue, but they will be thoroughly 
described in the following sections.

We start by analysing the synergetic effects of class imbalance and overlap over the 
domains presented in Fig.  2, previously discussed in seminal work  (García et  al. 2008) 
(Sect. 2). Figure 2 represents two “typical situations”, where classes are uniformly distrib-
uted over 2-dimensional squares with the same size. In these domains, the computation of 
the class overlap degree was either determined as a fraction of the area that is overlapped 
( Aoverlap ) over the total minority area ( Amin ), or over the total majority area ( Amaj ), since 
Amin = Amaj . As an example, consider the scenario depicted in Fig. 2 (left-side), where the 
domain presented a class overlap of 40% (García et al. 2008). This overlap percentage may 
be calculated as Aoverlap

Amin

× 100 or Aoverlap

Amaj

× 100 , which corresponds to an overlap degree of 
2000

5000
× 100 = 40%.

Now, note how focusing a measure of class overlap solely on the area of the over-
lap regions does not take the imbalance ratio into account. For instance, in Fig.  2 (left-
side), the domain is generated for an IR of 4:1, for 500 examples: would it be adequate to 
assume that the same setup for a 8:1 ratio (Fig. 2, right-side) would also produce a class 
overlap of 40%? Since the number of conflicting examples in the same overlap region is 
lower, this may not be the case. Nevertheless, measuring class overlap as a percentage of 
the overlapped area remains a common strategy used in the experimental setup of recent 
research  (Vuttipittayamongkol and Elyan 2020b; Vuttipittayamongkol et  al. 2020). Note 
also that determining the number of misclassified examples following a k-Nearest Neigh-
bour rule (another strategy to quantify class overlap, more closely related to the concept of 
local data characteristics—to be discussed in Sect. 6.3), would return a different overlap 
degree for each scenario, whereas determining the size of overlapped area is more related 
to the structural properties of the data, and unable to capture more local changes in the 

Fig. 2  Artificial domains generated according to García et  al. (2006). Although the overlap region is the 
same in both examples, one domain (left-side) considers an IR of 4:1 whereas the other (right-side) has 
an IR of 8:1. According to the percentage of overlapped area, both reveal the same overlap degree (40%), 
although due to the imbalance ratio, the local properties of domains are rather different
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domain. The key idea here is to show how class overlap may depend on other characteris-
tics (class imbalance in this example) and that different measures capture different repre-
sentations/vortices of class overlap.

Let us consider another example on different facets of class overlap, by examining 
Fig. 3. The example shows two scenarios where class overlap is measured according to the 
Maximum Fisher’s Discriminant Ratio, F1 (discussed in Sect. 6.1). In both scenarios, the 
data is projected onto the axis of features f1 and f2 . The projections are the same for the 
f1 but differ for f2 . Since F1 is maximal (and the same) in both situations, the scenarios 
reveal the same class overlap degree. However, in the scenario to the right, the separability 
of f2 increases when compared to the situation to the left. If local information is taken into 
account, this domain would return a different overlap degree, since the number of mis-
classified examples (1NN) is lower (misclassified examples are marked in grey in Fig. 3). 
Additionally, F1 does not consider class imbalance: for two datasets with different imbal-
ance ratios and similar statistical properties (i.e., means and variances of each class are 
similar for both scenarios), F1 returns similar values. Again, this shows that class overlap 
may comprise different representations and that certain measures are able to capture some 
while failing to uncover others. In this case, F1 focuses on feature-level overlap, but does 
not consider local data characteristics (local information).

Now that we have established that class overlap may comprise several representations 
and that some measures are able to capture some representations while neglecting others, 
it is important to establish the link between existing measures of class overlap in the litera-
ture, and the type of information (vortices of class overlap) they are associated to.

Throughout the years, several measures have been proposed and reformulated to iden-
tify and estimate certain properties of the data domains, referred to as data complexity 
measures  (Ho and Basu 2002; Lorena et al. 2019; Orriols-Puig et al. 2010; Sotoca et al. 
2005). The most well-known taxonomy of complexity measures is the one defined by 
Ho and Basu (2002), although throughout the years, other authors sought to complement 
this taxonomy, presenting their own division or proposing additional categories  (Lorena 
et al. 2019; Sotoca et al. 2005). Overall, these measures provide important insights regard-
ing several properties of data and naturally, some relate to the problem of class overlap. 

Fig. 3  F1 measures the highest discriminative power for all features in data, i.e., it returns the minimum 
overlap of individual features found in the domain. Accordingly, the scenarios above reveal the same dis-
criminative power: feature f1 has the same (and highest) F1 value in both cases. However, the individual 
overlap in feature f2 is different, which makes these scenarios different in terms of classification difficulty. 
F1 therefore captures one facet of class overlap (feature overlap) but it does not provide a full characterisa-
tion of the class overlap problem in the domain
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However, complexity measures often focus on individual characteristics of the data, which 
might be insufficient to fully characterise class overlap, given that it is a heterogeneous 
concept comprising different sources of complexity (especially in the presence of other fac-
tors, such as class imbalance). A first step towards a robust characterisation of class overlap 
would be the definition of a taxonomy of class overlap measures that attends to its different 
representations, i.e., sources of complexity. However, although class overlap is considered 
one the most harmful issues for classification problems  (Fernández et  al. 2018a; García 
et al. 2008), no such taxonomy currently exists. In what follows, we propose a novel tax-
onomy of complexity measures for class overlap, focusing on different vortices/representa-
tions of the problem and the measures that are able to characterise them.

Our taxonomy of class overlap complexity measures comprises four main groups: 
measures associated to Feature Overlap, Structural Overlap, Instance-Level Overlap and 
Multiresolution Overlap. Figure 4 provides an overview of the proposed taxonomy, where 
each group is established depending on the representation of class overlap it is more suited 
to capture. Also, the concepts associated to each representation are highlighted and the 
measures for which adaptations to imbalance domains have been explored in the literature 
are identified. The following sections thoroughly characterise each group and their respec-
tive class overlap measures. All measures described in this section are implemented in a 
new Python library named pycol—Python Class Overlap Library, publicly available on 
GitHub.3

Fig. 4  Taxonomy of class overlap complexity measures. Different groups can be established depending on 
the representation of class overlap they are attentive to. Measures marked with an asterisk are those for 
which adaptations to imbalanced domains have been discussed in the literature

3 https:// github. com/ miria mspsa ntos/ pycol.

https://github.com/miriamspsantos/pycol
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6.1  Feature overlap

These measures characterise the class overlap of individual features in data. Some are 
deeply associated to the concept of class separability, i.e., individual feature separabil-
ity (F1, F1v) and focus on certain properties of class distributions to determine the dis-
criminative power of features. Others recur to feature space partitioning to delimit overlap 
regions (F2, F3, F4, IN), i.e., they divide features into certain ranges where data overlap is 
analysed.

6.1.1  Maximum Fisher’s discriminant ratio (F1)

The maximum Fisher’s discriminant ratio (F1) is perhaps the widest used measure to 
compute the overlap degree of a given dataset (López et al. 2013; Luengo et al. 2011; 
Santos et al. 2018).

For each feature fi comprised in the dataset, the Fisher’s discriminant ratio ( rfi ) is 
obtained through Eq. 3, where �1 , �2 , �2

1
 , and �2

2
 are the means and variances of class 

1 and 2, respectively. Then, F1 is obtained by finding the maximum rfi over all features 
in data. As depicted in Fig. 5 (to the left), F1 traditionally measures how discriminative 
each feature is, i.e., how well it can separate classes. Intuitively, higher values of F1 
indicate less overlapped domains.

In order to provide a measure of class overlap rather than class separability, Lorena et al. 
(2019) establish the inverse of the original F1 formulation: F1 =

1

1+r
 , where r is the maxi-

mum rfi among all features. In such a case, higher values of F1 indicate more overlapped 
domains.

(3)rfi =
(�1 − �2)

2

�
2
1
+ �

2
2

Fig. 5  Representations of F1 (leftside) and F2 (rightside) measures for the same dataset. Note how F1 pro-
jects data onto the axis to establish the amount of overlap, where f1 is the feature with highest discrimina-
tive power, i.e., lowest overlap. In turn, F2 considers both features to define a region where classes coexist
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6.1.2  Directional vector maximum Fisher’s discriminant ratio (F1v)

Rather than determining the separability of classes on the projection of data perpen-
dicular to the axes (please refer to Fig. 5), F1v searches for a vector where data can be 
projected with maximum separability (Orriols-Puig et  al. 2010). It computes the two-
class Fisher criterion, dF, as defined in Malina (2001), where higher values indicate a 
higher separability between classes. Similarly to F1, Lorena et al. (2019) define F1v as 
follows from Eq. 4, where lower values indicate that there is a vector capable of separat-
ing classes after projecting data onto it. In other words, higher values of F1v indicate 
higher amounts of class overlap.

6.1.3  Volume of overlapping region (F2)

To determine F2, the overlap of the distribution of feature values is computed individually for 
each feature ( fi = 1,… ,m ). First, the maximum and minimum values of each feature fi are 
found, considering both classes C1 and C2 . Then, the overlap length of feature values is deter-
mined and normalised by the overall range of the feature. Finally, F2 is determined by multiply-
ing the ratio obtained for each feature (Eq. 5), where higher values indicate a greater amount of 
class overlap. An example of the determination of F2 is depicted on Fig. 5 (rightside).

(4)F1v =
1

1 + dF

(5)

F2 =

m∏

i=1

overlap(fi)

range(fi)
=

m∏

i=1

max{0,minmax(fi) −maxmin(fi)}

maxmax(fi) −minmin(fi)
, where

minmax(fi) = MIN(max(fi, c1), max(fi, c2))

maxmin(fi) = MAX(min(fi, c1), min(fi, c2))

maxmax(fi) = MAX(max(fi, c1), max(fi, c2))

minmin(fi) = MIN(min(fi, c1), min(fi, c2))

Fig. 6  Representation of F3 measure for the data domain of Fig.  5. Feature efficiency is measured indi-
vidually for f1 (leftside) and f2 (rightside), where f1 is the most efficient feature, i.e., it returns the minimum 
amount of overlap. Adapted from Lorena et al. (2019)
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6.1.4  Maximum individual feature efficiency (F3)

Traditionally, F3 measures the discriminative power of individual features by determining 
the efficiency of each feature and returning the maximum value (Ho and Basu 2002). For 
each feature, F3 determines the regions where there are values from both classes and then 
returns the ratio of feature values that are not in the overlapping regions. In Lorena et al. 
(2019), a complementary measure is presented, where F3 measures the minimum amount 
of overlap between feature values of different classes (Eq. 6). Thus, higher values of F3 
indicate more overlapped domains (Fig. 6).

where i = 1,… ,m features and n is the total number of examples in data.

6.1.5  Collective feature efficiency (F4)

Whereas F3 focuses on individual feature efficiency, F4 considers the discriminative power 
of all features (Orriols-Puig et al. 2010). To find F4, the following procedure is applied: 
first, the feature with highest discriminative power (lowest overlap) according to F3 is 
taken and all examples that can be separated using this feature are removed from the data. 
Then, the next most discriminative feature (considering the remaining examples) is taken 
and the process is repeated iteratively over all features. In the end, according to the origi-
nal formulation (Orriols-Puig et al. 2010), F4 returns the proportion of examples that have 
been discriminated, thus providing an idea on the proportion of examples that could be cor-
rectly separated by hyperplanes parallel to one of the axis of the feature space. Lorena et al. 
(2019), however, consider F4 as the ratio of examples that could not have been separated 
(Fig. 7). Thus, higher values of F4 indicate a larger amount of overlap between classes, 
considering all features collectively. F4 may be determined by Eq. 8, where fl represents 

(6)F3 = min
(noverlap(fi)

n

)
,

(7)noverlap(fi) = |{xj ∈ fi ∶ xj > maxmin(fi) ∧ xj < minmax(fi)}|

Fig. 7  Representation of F4 measure for the data domain of Fig. 5. Since f1 is the most efficient feature, all 
examples that can be separated according to f1 (outside the grey area) are removed. Then, the same is per-
formed on f2 . The remaining data examples are those who could not be separated, thus contributing to class 
overlap. Adapted from Lorena et al. (2019)
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the last most discriminative feature found through the iterative process described above and 
n is the total number of examples in data.

6.1.6  Input noise (IN)

The Input Noise (IN) is related to the amount of overlap between features of different classes 
(Van der Walt and Barnard 2007). To determine the input noise, the maximum and minimum 
values of each feature for each class are used to define their boundaries. Then, if a given exam-
ple falls inside the boundaries of another’s class feature values, it is contributing to the overlap 
on this feature. To this regard, the input noise is related to F2 and F3 measures. However, the 
input noise measure then determines, for each example, in how many dimensions (features) it 
overlaps and normalises the total by n × D , where n is the number of examples in data and D 
is the number of existing dimensions (Eq. 9). Higher values of IN indicate higher amounts of 
class overlap. In Eq. 9, gi represents the number of features where the ith example is in overlap-
ping regions.

6.2  Structural overlap

This group of measures is associated with the concept of class complexity (non-linear bound-
aries and class decomposition), comprising information on the internal structure of classes 
(data morphology). They can be used to characterise class overlap regions using a “divide-
and-conquer” perspective, i.e., focusing on the structure of the domain to find problematic 
regions. Some measures analyse the properties of a Minimum Spanning Tree (MST) built over 
the data domain to produce measures of decision boundary complexity and structural overlap 
(N1). Others approach the identification of class overlap using the notion of hypersphere cov-
erage (T1, Clst, ONB, LSCAvg). Some consider both MST and hypersphere coverage (DBC). 
Finally, also linked to the concept of data morphology, other measures aim to quantify the data 
sparsity/density of manifolds (N2, NSG, ICSV).

6.2.1  Fraction of borderline points (N1)

N1 measures the proportion of examples that are connected to the opposite class by an edge in 
a Minimum Spanning Tree (MST) (Ho and Basu 2002) (Fig. 8). Most often, these examples 
are those located near the boundary between classes, or those inserted in overlapped regions 
in the data space. In general, higher values of N1 indicate a higher degree of class overlap 
(classes are more deeply intertwined) (Lorena et al. 2019; Pascual-Triana et al. 2021). How-
ever, there are situations where N1 may assume higher values for simpler domains, e.g., if the 
class boundary has a narrower margin than the intra-class distances (Santos et al. 2018). Con-
sidering V and E as the set of vertices and edges of a MST(V, E), N1 can be defined by Eq. 10, 
where yi is the class label of a given example xi.

(8)F4 =
noverlap(fl)

n

(9)IN =
1

n ⋅ D

n∑

i=1

gi
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6.2.2  Fraction of hyperspheres covering data (T1)

To determine T1, a hypersphere centred at each example of the dataset is created and its 
radius is grown until it reaches an example of the opposite class. Then, hyperspheres con-
tained in larger ones (of the same class) are eliminated (Fig. 9). T1 is then defined as the 
ratio of hyperspheres that remain, as shown in Eq. 11, where n represents the total number 
of examples in data.

(10)N1 =
1

|V|
|{xi ∈ V ∶ ∃(xi, xj) ∈ E ∧ yi ≠ yj}|

Fig. 8  A representation of the 
N1 measure. Marked points from 
both classes are those contribut-
ing to class overlap (connected to 
the opposite class in the MST). 
Adapted from Lorena et al. 
(2019)

Fig. 9  Representation of the original T1 solution for two datasets (top and bottom rows). In the scenario 
depicted in the top row, the hyperspheres of points D and A are not completely absorbed by any other 
hypersphere in the domain. On the contrary, in the scenario of the bottom row, hypersphere D and A are 
absorbed by hyperspheres C and B, respectively, and are therefore eliminated
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Lorena et  al. (2019) consider an alternative implementation of T1, where the growth 
of a hypersphere is stopped when it starts to touch a hypersphere of the opposite class. 
Accordingly, this modification starts by determining the existing mutual nearest enemies 
in data, for which their radii are automatically established as half of the distance between 
them. The radius of the remaining hyperspheres are then determined recursively (Fig. 10).

Given that the hyperspheres only contain examples of the same class, higher values 
of T1 indicate a larger amount of class overlap. Nevertheless, this measure is also sensi-
tive to the distribution of data in the domain, i.e., covering situations where the domain 
is composed by different clusters of the majority and minority classes (even if there is 
no class overlap), will require a higher number of hyperspheres (Lorena et al. 2019).

(11)T1 =
#Hyperspheres

n

Fig. 10  Alternative T1 implementation (Lorena et al. 2019) for the scenarios depicted in Fig. 9. The modi-
fication starts by finding which data points are each other’s nearest neighbours of opposite classes (i.e., 
nearest enemies): D and F in the scenario of the top row, and both D and F and A and G in the bottom row. 
The radii of their hyperspheres are automatically defined as half of the distance between them. Then, for 
each remaining data point, its radius is defined as the distance to its nearest enemy minus the radius of the 
nearest enemy itself. Considering the scenario in the top row, the radius of hypersphere C corresponds to its 
distance to F (its nearest enemy), minus the radius of F itself. Accordingly, the radius of E is determined by 
considering its distance to C, and so forth
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6.2.3  Local set average cardinality (LSCAvg)

The Local Set (LS) of a given data example xi is the set of examples whose distance to 
xi is smaller than the distance of xi to its nearest neighbour of the opposite class, NNio 
(Leyva et al. 2014). An example of a LS is depicted in Fig. 11. Considering U as the set 
of all examples in the data space, the LS of a given example xi can be defined as:

To determine the Local Set Average Cardinality (LSCAvg) of a dataset, the number 
of points included in each example’s LS is aggregated according to Eq. 13. Examples 
with a small number of points in their LS are either examples located near narrow deci-
sion borders, or examples located in regions populated by the opposite class (overlap-
ping regions). A smaller number of points in each example’s LS leads to lower values of 
LSCAvg, which represent more overlapped and complex domains.

(12)LS(xi) = {xj ∈ U ∶ d(xi, xj) < d(xi,NNio)}

Fig. 11  The concept of Local 
Set, LS. Considering xi as point 
A, its nearest neighbour of the 
opposite class NNio (nearest 
enemy) is point B. Thus, the LS 
of point A is the set of examples 
whose distance to A is smaller 
than d(A, B), included in the 
dotted circle. The local set car-
dinality of A is therefore 4, i.e., 
|LS(A)| = 4 . Adapted from Leyva 
et al. (2014)

Fig. 12  Local Set-based clustering. The first identified cores are E and G, in any order, since they have the 
largest LS ( |LS(E)| = |LS(G)| = 3 ). Then, points A and C are chosen as cores since they both have a LS of 
2. The remaining examples do not become cores, since they are already comprised in the local sets of other 
cores. Finally, although D is both contained in the LS of E and C, it belongs to the cluster with core E, since 
E has a higher LS cardinality. Adapted from Leyva et al. (2014)
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where n represents the total number of examples in data.

6.2.4  Number of clusters (Clst)

The Number of Clusters (Clst), similarly to T1, determines the number of clusters of the 
same class that cover the data domain (Leyva et  al. 2014). The proposed algorithm in 
Leyva et al. (2014) starts by considering the data examples with higher LS cardinality as 
cluster cores. Then, for each remaining example, the algorithm checks if they belong to the 
LS of a cluster core. If so, the example is included in the existing cluster; otherwise, a new 
cluster core is created, and the process is repeated, always prioritising cores with the high-
est LS cardinality. An example of the clustering procedure is depicted in Fig. 12. After all 
examples are assigned to clusters, the total number of existing clusters is determined and 
Clst defined by Eq. 14, where n is the total number of examples in data.

(13)LSCAvg =
1

n2

n∑

i=1

|LS(xi)|,

(14)Clst =
#Clusters

n

Fig. 13  A representation of the Clst solution for a given dataset, considering all points. The LS of each data 
example is determined and starting with the examples with largest LS, the clusters are built by iteratively 
finding candidate cluster cores. In this solution, all existing points are kept and the final number of clusters 
reflects the amount of class overlap in the domain: 15 clusters for 23 data points

Fig. 14  A representation of the Clst solution for the dataset in Fig.  13, removing overlapped and noisy 
points. In this scenario, prior to the LS computation, the noisy and overlapped points are removed accord-
ing to the ENN rule, returning a solution of 3 clusters for 13 data points. It seems, however, that removing 
data points alters the true complexity of the original data domain
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A note worth considering is that, in the original formulation, LSCAvg and Clst mainly 
focus on characterising class borders (determining how narrow and/or irregular they are). 
For this reason, overlapping and noisy examples are considered atypical and removed from 
the dataset (using the ENN algorithm Wilson 1972) prior to the computation of the LSC 
cardinality of each example. Nevertheless, both types of examples (located near the class 
borders, or in overlapping regions) contribute to class overlap, and both LSCAvg and Clst 

Fig. 15  A representation of the ONB solution for the dataset in Figs. 9 and 10 (top-row). First, a ball is cen-
tred at each data point and grown until it touches a point from the opposite class. Then, the balls containing 
a larger number of points are iteratively chosen. Adapted from Pascual-Triana et al. (2021)

Fig. 16  A representation of the 
DBC measure. In the MST, there 
are 8 centres connected to centres 
of a different class ( Ninter = 8)

Fig. 17  A representation of intra-distances and inter-distances for N2 computation. Less overlapped 
domains generally present more compact concepts (lower intra-distances average) that are well-separated 
(higher inter-distances average), thus returning lower values of N2
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can be used to characterise it. Figures 13 and 14 provide an comparison between a solution 
that does not remove overlapping points and one that does (as originally formulated).

6.2.5  Overlap number of balls (ONB)

The Overlap Number of Balls (ONB) is based on the same rationale as T1 (Pascual-Triana 
et al. 2021). The idea is to determine how many balls containing only examples of the same 
class are needed to cover the entire data space. ONB uses the Pure Class Cover Catch Digraph 
(Manukyan and Ceyhan 2016) to determine the maximum radii for all examples in data (the 
radius of a ball is increased until it touches an example from the opposite class). Then, for 
each example, the ball that includes the largest number of same-class examples is chosen, until 
all examples are covered (Fig. 15). After the final number of balls is defined, two measures 
can be determined: ONBtot and ONBavg . ONBtot represents the ratio between the number of 
balls necessary to cover the domain and the number of examples in data, n (Eq. 15). ONBavg 
determines the average ONB, considering the number of balls necessary to cover each class C 
(Eq. 16).

6.2.6  Decision boundary complexity (DBC)

The Decision Boundary Complexity (DBC) is an extension of T1 which determines the 
interleaving of hyperspheres of different classes (Van  der Walt et  al. 2008). After the 
hyperspheres from T1 are found, a Minimum Spanning Tree (MST) is constructed using 
the centres of the hyperspheres (Fig. 16). Then, the number of connected centres of differ-
ent classes ( Ninter ) is determined and DBC is computed as follows:

6.2.7  Ratio of intra/extra class nearest neighbour distance (N2)

N2 compares the within-class and between-class spread, i.e., it represents a trade-off 
between intra-class distances and inter-class distances (Ho and Basu 2002). The dis-
tance between each data example and its nearest neighbour of the same class, d(xi,NNis) , 
as well as between its nearest neighbour from the opposite class, d(xi,NNio) , are com-
puted (Fig. 17). Then, the sum of all intra and inter-class distances are aggregated to pro-
duce a intra/inter class ratio (r) and N2 can be determined according to Eq. 18, where n 

(15)ONBtot =
#Balls

n

(16)ONBavg =
1

C
⋅

C∑

c=1

#Ballsc

nc

(17)DBC =
Ninter

#Hyperspheres
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represents the total number of examples in data. Higher values of N2 indicate more over-
lapped domains (Santos et al. 2018).

6.2.8  Number of samples per group (NSG)

This measure provides an indication of the average size of groups that exist in data by 
determining the average number of examples in each hypersphere found by T1 (Eq. 19) 
(Van  der Walt and Barnard 2007). Ni represents the number of examples inside hyper-
sphere i.

In such a way, NSG (as all density measures in general) adds local information to structural 
overlap measures. A large number of hyperspheres comprising a small number of examples 
is indicative of a more intertwined data domain.

6.2.9  Inter‑class scale variation (ICSV)

The inter-class scale variation measures the standard deviation of hyperspheres’ densities 
(Van der Walt and Barnard 2007). First, the density � of each hypersphere found according to 
T1 is determined, where Nsphere and Vsphere represent the number of examples in a hypersphere 
and its volume, respectively. Then, the standard deviation of the sphere densities (ICSV) is 
found, as follows from Eq. 20. nH represents the number of hyperspheres (#Hyperspheres) and 
�
�
 represents the average density of hyperspheres. Higher ICSV values are associated with 

changes in the local data densities of the domain, thus indicating more complex scenarios.

6.3  Instance‑level overlap

These measures are able to analyse the domains at a local level, where class overlap is com-
monly associated to the error of the k-nearest neighbour classifier. While some measures 
provide an overall value for the entire domain (R-value, Raug , degOver, N3, SI, N4), others 
are particularly related to the identification of local data characteristics, i.e., data typology or 
instance hardness (kDN, D3, Borderline Examples, IPoints). They provide local information 
on the complexity of the domain by identifying problematic examples in data, frequently those 
near the class boundaries (associated with class overlap). Although some of these measures 
evaluate data examples individually according to their characteristics, they can then adapted in 
order to produce an estimate for the entire domain.

(18)N2 =
r

1 + r
, where r =

∑n

i=1
d(xi,NNis)∑n

i=1
d(xi,NNio)

(19)NSG =
1

#Hyperspheres

#Hyperspheres∑

i=1

Ni

(20)ICSV =

√√√√ 1

nH

nH∑

i=1

(�i − �
�
)2, where � =

Nsphere

Vsphere

and �
�
=

1

nH

nH∑

i=1

�i
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6.3.1  R‑value and augmented R‑value

The R-value defines the degree of overlap between two classes Ci and Cj by determining 
the number of points of each class that fall onto overlap regions between classes (Oh 2011). 
For each mth instance of class Ci (represented as pim ), the examples in its k-neighbourhood 
that belong to Cj , represented by kNN(pim,Cj) , are found (Fig. 18). Then, pim is assigned as 
belonging to an overlapping or non-overlapping region, as follows from Eq. 21. |Ci| repre-
sents the number of examples of class Ci , whereas � is a threshold used to define whether pim 
is inside an overlap region or not. � is a binary function that represents such decision, i.e., 
�(a) = 1 if a > 0 ; otherwise �(a) = 0 . In other words, if we consider � = 2 , it means that 2 
is the maximum number of points from the opposite class that we tolerate in the k-vicinity of 
pim . If there are more than 2 points, then pim is considered an overlapping point. The same is 
performed for class Cj and the final results are aggregated as follows from Eq. 22.

R-values range from 0 (no overlap) to 1 (complete overlap), taking into account all exam-
ples in the data domain, whether they are from the majority or minority classes.

The Augmented R-value ( Raug ) is an extension of the R-value that takes into account the 
imbalance ratio of the data domain (Borsos et al. 2018) (Eq. 23), where R(Cmin) and R(Cmaj) 
may be calculated as an arbitrary R(Ci) according to Eq. 24.

(21)r(Ci,Cj) =

|Ci|∑

m=1

�

(
|kNN(pim,Cj)| − �

)

(22)R(Ci,Cj) =
r(Ci,Cj) + r(Cj,Ci)

|Ci| + |Cj|

(23)Raug(Cmin,Cmaj) =
1

IR + 1

(
R(Cmaj) + IR ⋅ R(Cmin)

)

Fig. 18  Basic concepts for R-value computation. Note how |kNN(pi1,Cj)| = 0 and |kNN(pi2,Cj)| = 4 , for 
k = 6 . Adapted from Oh (2011)
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This extension is based on the rationale that, for binary classification, the contribution of 
the majority class overlap to the overall overlap should not be directly proportional to the 
number of majority examples, given that most of them are frequently non-overlapping 
examples (Borsos et  al. 2018). For IR = 1 , Raug is equivalent to the R-value (Eq.  22), 
whereas as the IR increases, Raug becomes closer to the R-value of the minority class 
(Eq. 24, assuming Ci as Cmin).

6.3.2  degOver

Similarly to what was described in the previous section, degOver determines the degree of 
overlap by finding overlapping and non-overlapping examples in a k-neighbourhood ( k = 5

)  (Mercier et al. 2018). For a given example, if all its 5-nearest neighbours are from the 
same class, then the example belongs to a non-overlapping region (Fig.  19). Otherwise, 
it is considered an overlapping example. Then, the number of overlapping examples (of 
both classes), i.e., nminover and nmajover is divided by the total of examples in the data space, n 
(Eq. 25). Higher values of degOver represent more overlapped domains.

6.3.3  Error rate of the nearest neighbour classifier (N3)

N3 measures the error rate of the Nearest Neighbour classifier (1NN), estimated using a 
Leave-One-Out (LOO) cross-validation. Higher N3 values are associated with a higher 
overlap degree between classes (Ho and Basu 2002). Considering U as the set of all exam-
ples in the data space, N3 can be defined according to Eq. 26, where yi represents the class 
of example xi , and yNNi

 represents the class of its nearest neighbour, NNi.

(24)R(Ci) =
1

|Ci|

|Ci|∑

m=1

�

(
|kNN(pim,Cj)| − �

)

(25)degOver =
(nminover + nmajover )

n

(26)N3 =
1

|U|
|{xi ∈ U ∶ yi ≠ yNNi

}|

Fig. 19  A representation of 
degOver. Marked points from 
both classes are those that con-
tribute to class overlap (located 
in overlapped regions)
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6.3.4  Separability index (SI)

Thornton’s Separability Index (SI) determines the proportion of points whose class is 
the same as of its nearest neighbour (Greene 2001; Thornton 1998). Considering a given 
example xi and its nearest neighbour NNi , SI is defined by Eq. 27. In such a way, SI meas-
ures class overlap by informing on the separability of the data domain, being the comple-
mentary measure of N3, where higher values indicate that there is a large amount of data 
points whose nearest neighbour is of the same class.

6.3.5  Non‑linearity of the nearest neighbour classifier (N4)

To compute N4, new synthetic examples x̂i are generated by interpolating pairs of data 
examples from the same class, chosen randomly. Then, the error rate of the Nearest Neigh-
bour classifier is estimated solely over the set of the new examples obtained by linear inter-
polation, I. For each new example, its closest neighbour of the original data space NNiU is 
determined, and their class labels are compared in order to produce N4 (Eq. 28). By deter-
mining the 1NN error on these new points, N4 establishes the overlap that exists between 
the convex hulls that delimit the classes (Lorena et al. 2019). Higher values of N4 represent 
more deeply overlapped domains (Fig. 20).

6.3.6  K‑disagreeing neighbours (kDN)

Considering an example xi , k-Disagreeing Neighbours (kDN) measures the percentage of 
its k nearest neighbours xv that do not share its class (Smith et al. 2014):

(27)SI =
1

|U|
|{xi ∈ U ∶ yi = yNNi

}|

(28)N4 =
1

|I|
|{x̂i ∈ I ∶ ŷi ≠ yNNiU

}|

Fig. 20  A representation of N4 
computation. New synthetic 
points (in grey) are generated 
by linearly interpolating random 
examples of the same class (con-
nected by dotted lines). Then, the 
1NN error is measured over the 
new points: marked points are 
those whose 1NN classification 
produces an error, thus identify-
ing class overlap. Adapted from 
Lorena et al. (2019)
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In such a way, kDN measures the local overlap of a given data example, where values 
closer to 0 indicate that xi is inside a safe region (all neighbours share its class label), 
whereas higher values indicate increasing amounts of data examples from the opposite 
class in its neighbourhood. A global measure for the entire domain could be achieved by 
averaging kDN over all examples in data, n:

6.3.7  Class density in the overlap region (D3)

D3 aims to describe the density of each class in the overlap regions by determining, for 
each class, the number of examples that lie in regions populated by a different class (Sotoca 
et  al. 2006). For each example xi , its k-nearest neighbours are found and if the majority 
belongs to a class different from xi , then xi is considered to be in an overlapping region. 
The number of examples that lie inside overlapping regions is then retrieved for each class 
Cj . Considering U as the set of all examples in the data space and kNNi as the set of the 
k-nearest neighbours of xi , D3 can be defined according to Eq. 31, where higher values for 
a given class correspond to regions populated by another class. yi and yv are the class labels 
of xi and xv , respectively, and �xi

 establishes the proportion of nearest neighbours of xi that 
share its class.

6.3.8  Complexity metric based on k‑nearest neighbours (CM)

CM also focuses on the local neighbourhood of each example to decide on its difficulty for 
classification (Anwar et al. 2014). The k nearest neighbours of each example xi are found 
(where k is odd), and if the majority of neighbours is of the same class as xi , the exam-
ple is considered easy; otherwise it is considered difficult. CM then measures the propor-
tion of difficult examples in data, as defined in Eq.  33, where kDN(xi ) has been previ-
ously described (Eq. 29) and n is the total number of examples in data. CM is therefore 
intrinsically related to kDN and somewhat the aggregation of D3 over the entire domain. 
Recent extensions of CM include wCM (Weighted Complexity Metric), and dwCM (Dual 
Weighted Complexity Metric) (Singh et al. 2020), that use a weighted kNN approach rather 
than a standard kNN classifier.

(29)kDN(xi) =
|{xv ∈ kNNi ∶ yv ≠ yi}|

k

(30)kDNavg =
1

n

n∑

i=1

kDN(xi)

(31)D3Cj
=|{xi ∈ U ∶ 𝛥(xi) < 0.5}|

(32)�xi
=
|{xv ∈ kNNi ∶ yv = yi}|

k

(33)CM =
|{xi ∶ kDN(xi) > 0.5}|

n
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6.3.9  Borderline examples

As discussed in Sect. 3, the presence of borderline examples is closely related to the prob-
lem of class overlap since higher percentages of this type of examples complicate the 
decision boundary between classes. A popular data typology divides data examples into 
4 categories (Napierala and Stefanowski 2016; Napierała et  al. 2010; Stefanowski 2013; 
Wojciechowski and Wilk 2017), according to their local neighbourhood (typically k = 5), 
as follows:

• Safe examples have 0 or 1 neighbours of the opposite class;
• Borderline examples have 2 or 3 neighbours of the opposite class;
• Rare examples have 4 neighbours of the opposite class. Additionally, the only neigh-

bour of the same class should be either an outlier example, or a rare example as well;
• Outlier examples have all 5 neighbours of the opposite class.

A representation of each type of example is presented in Fig. 21. Most often, the data typol-
ogy is used in scenarios comprising class imbalance (Napierala and Stefanowski 2016; 
Napierała et al. 2010; Stefanowski 2013; Wojciechowski and Wilk 2017), and therefore is 
often solely applied to the minority class. However, it can be applied to all existing classes. 
In such a case, the number of borderline examples from all classes ( nborderline ) is determined 
according to the rules described above and divided by the total number of examples in data 
(n), thus defining the degree of overlap as a percentage (Eq. 34). This would be reminiscent 
of R-value, degOver, and CM, although it considers solely one type of difficult examples 
(borderline examples), as they relate the most to the concept of class overlap.

6.3.10  Number of invasive points (IPoints)

When data examples are clustered according to the their local sets (LS), some resulting 
clusters may contain only one instance. This may represent a situation where two cluster 

(34)Overlap (%) =
n
borderline

n
× 100

Fig. 21  A representation of different example types: A is a safe example, surrounded by neighbours of its 
class; B is an outlier example, isolated in an area of the opposite class; C and D are rare examples and 
finally, E and F are borderline examples, located near the decision border between classes
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cores share some examples in their local sets, except than one of the cores has a larger 
local set cardinality (Leyva et al. 2014). An example of such situation has previously been 
discussed in Fig. 12, where cores E and C share point D, but D belongs to the cluster with 
core E, since E has a higher LS cardinality. Then, point C will produce a separate cluster 
of only one point (itself). If a given cluster has only one point (the core) and its local set 
contains only the point itself, then it is called an “invasive point”. Note that in Fig.  12, 
point C is not an invasive point because, although it will produce a cluster of only itself, its 
local set contains C and D, i.e., LS(C) = {C,D} . An example of an invasive point is given 
in Fig. 22.

Invasive points are therefore border examples that somewhat infiltrate the opposite 
class, or examples located in overlapping regions of the data space. The number of these 
type of points normalised by the total number of points (n) characterises the complexity of 
the domain, where a large number of invasive points indicates more intertwined domains 
(Eq. 35).

6.4  Multiresolution overlap

This group of measures uses multiresolution approaches to identify regions of different 
complexity within the domains. Some are more closely related to the previous ideas of 
using hyperspheres (MRCA) or k-neighbourhoods (C1 and C2) to define regions of the 
space where class overlap can be analysed. Others are associated with feature space parti-
tioning, where features are divided into a specific number of intervals where the properties 
of class overlap may be assessed (Purity and Neighbourhood Separability). Nevertheless, 
the main idea than binds these measures together is that they operate recursively (fine-
grain search), i.e., defining hyperspheres, neighbourhoods, or feature partitions at different 
resolutions, all of which are individually analysed. This allows to combine both local and 
structural information, characterising the data domains from the perspective of recursive 

(35)IPoints =
#Invasive Points

n

Fig. 22  A representation of an invasive point. Note that K is an invasive point since it produces a cluster of 
only itself, has no other points in its local set and is not included in the local set of any other point, includ-
ing its closest neighbours, J and L. In turn, J and L are not invasive points because despite their local sets 
contain only themselves, they do not produce singular clusters, as they are included in other points’ local 
sets (other clusters). Adapted from Leyva et al. (2014)
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data subspaces. Class overlap is therefore determined at several resolutions, providing a 
trade-off between global and local data characteristics.

6.4.1  Multiresolution complexity analysis (MRCA)

Multiresolution Complexity Analysis (MRCA) aims to identify regions of different com-
plexity in the data domain (Armano and Tamponi 2016). Each data example is attributed 
a profile space, which is then used for clustering and complexity analysis  (Fig.  23). To 
generate a profile space for a given data example, hyperspheres of different radii are drawn 
around it. The content of each hypersphere is then analysed through the use of an imbal-
ance estimation function which, given a set of examples � , is defined as follows:

The data example � and parameter � are the centre and radius of the hypersphere, respec-
tively, and N+

�
(�) and N−

�
(�) are the number of data examples of the positive and negative 

class inside the hypersphere. �(�) gives the class of � , herein assuming two possible values 
{−1, 1} . � therefore ranges between [ −1, 1 ], where −1 and 1 indicate a strong imbalance 
inside the hypersphere, with most of the data examples being from the opposite class of � 
( −1 ), or mostly equal to � (1). � = 0 characterises situations where both classes are equally 
represented inside the hypersphere.

A profile pattern of � can be obtained by considering different radii � in the generation 
of the hyperspheres. Considering a set of m hyperspheres, a profile � is given by:

(36)�D(�, �) = �(�) ⋅
N+
�
(�) − N−

�
(�)

N+
�
(�) + N−

�
(�)

Fig. 23  A representation of MRCA. The profile of data example � is defined using 3 hyperspheres of 
radius �1 , �2 and �3 , for which �(�, �) is computed, respectively. Thus, a profile pattern � is constructed 
as � = [1, 0, 0.33] , with a MRI(� ) of 0.15. After all data examples have been profiled, a new data space 
of profile patterns � is constructed and clustered, where each pattern � is included in clusters of different 
complexity. Data example � was mapped to a pattern � that belongs to the blue cluster. In such a way, it is 
possible to find patterns � of different difficulty by analysing the cluster solution, which in turn correspond 
to difficult data examples � in the original data space. Note that patterns � included in the same cluster do 
not necessarily correspond to nearby examples in the original data space since clusters are built based on 
the difficulty of data examples, not their distance to each other. (Color figure online)
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After all data examples have been assigned their profile patterns, a set of profile patterns � 
is obtained, which can then be clustered to determine regions of different complexity, via 
k-means clustering (Armano and Tamponi 2016). Then, to define the pattern and cluster 
complexity, a Multiresolution Index (MRI) can be computed for each pattern �:

where wj = 1 −
j−1

m
 , giving higher weights to components with finer granularity. The com-

plexity of a kth cluster is then determined by averaging the complexity of patterns � that 
belong to it.

Lower values of MRI(k) characterise clusters comprising patterns � with most �D(�, �) ≈ 1 , 
which represent patterns � belonging to less complex regions. In turn, higher values of 
MRI(k) indicate clusters comprising patterns � with most �D(�, �) ≈ −1 , representing pat-
terns � in more complex regions. Balanced clusters indicate medium complexity regions, 
with MRI(k) =

1

2
.

6.4.2  Case base complexity profile ( C
1
)

Similarly to MRCA, C1 measures the local complexity of a data domain by focusing on 
the spatial distribution of data examples (Massie et  al. 2005). The complexity of each 
data example is determined based on the class distribution within its k-neighbourhood, for 
increasing values of k. For each k value and data example xj , the proportion of examples 
that share the same class as xj is determined ( pkj ) and a nearest neighbour profile can be 
determined by plotting pkj as a function of k (Fig. 24).

(37)� = [�(�, �1),�(�, �2),… ,�(�, �m)]

(38)MRI(�) =
1

2m
⋅

m∑

j=1

wj ⋅ (1 − pj),

(39)MRI(k) =
1

|�(k)|
⋅

∑

�∈�(k)

MRI(�)

Fig. 24  A representation of C1 . A complexity profile can be determined for xj by analysing the 
characteristics of its neighbourhood for different values of k. With k = 3 , the complexity of xj is 
1 −

1

3
(1 + 0.5 + 0.67) ≈ 0.28 . Adapted from Massie et al. (2005)
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For a given chosen K, the complexity of xj is given by Eq. 40, where neighbours closer 
to xj have a higher influence on the complexity since they are used to compute several val-
ues of pkj (Cummins 2013).

To provide an overall complexity value for the entire data domain, the complexity of all 
points may be averaged according to Eq. 41, where n is the total number of data examples.

6.4.3  Similarity‑weighted case base complexity profile ( C
2
)

C2 is a modification of C1 that associates the weight of each neighbour to their distance to 
xj , so that closer neighbours have a higher impact in complexity computation (Cummins 
2013). In C2 , pkj is given as the average similarity between xj and the k-neighbours that 
share its class. The overall complexity C2 is given by the same Eqs. 40 and 41, yet consid-
ering the modifications to pkj.

6.4.4  Purity and neighbourhood separability

Another type of multiresolution analysis is feature space partitioning. Feature Space 
Partitioning measures work by recursively partitioning the data space into hypercuboids 
(cells) at several resolutions, where each resolution is defined by the number of partitions 
per feature (Singh 2003a, b). As the resolution increases, the data space is composed by a 
larger number of cells and each cell includes a smaller number of data examples. Based 
on this partitioning scheme, two complexity measures called Purity and Neighbourhood 

(40)Complexity(xj) = 1 −
1

K

K∑

k=1

pkj

(41)C1 =
1

n

n∑

j=1

Complexity(xj)

Fig. 25  A representation of the feature partitioning scheme for B = 2 , B = 3 and B = 9 , from left to right, 
respectively. Higher resolutions provide more local information regarding the domain. At each resolution B, 
the domain complexity (purity or neighbourhood separability) is determined, where each cell is individu-
ally analysed. The final complexity measures are determined by averaging the individual results of all cells. 
Cells marked in grey are those shared by examples of different classes, identifying overlapping regions
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Separability may be defined. The former relates to how pure are the defined cells, consider-
ing the number of representatives of each class comprised inside each cell. The latter finds, 
for each example in a cell, the proportion of nearest neighbours that share its class.

For both measures, the data space is divided at different resolutions from B = 0 (no 
partitioning) to B = 31 (up to 32 cells per axis), where data examples are assigned to their 
closest cell (Fig. 25). Then, the following strategy is applied:

• At each resolution B, the complexity (purity or neighbourhood separability) is meas-
ured individually for each cell;

• The estimates of each cell are linearly weighted to produce an estimate for that resolu-
tion, where the weight given to the estimate of each cell is proportional to the number 
of examples it contains ( nl

n
 ), where nl is the number of examples in the cell and n repre-

sents the total number of examples in data;
• The complexity across all cells at a given resolution is also exponentially weighted by a 

factor of w =
1

2B
 , where larger weights are given to lower resolutions;

• Finally, a curve of complexity versus resolution is plotted and the area under the curve 
(AUC) defines the overall complexity of the data, bounded within the [0,1] interval.

In what follows, we explain how purity and neighbourhood separability are computed. 
Detailed algorithms of both measures, as well as the feature partitioning scheme, are avail-
able in Singh (2003b).

Purity
Purity measure determines how pure the defined cells are, focusing on class representa-

tion inside each cell. If all data examples are from the same class, the cell is completely pure; 
otherwise, the purity of each cell depends on the number of representatives of each class com-
prised inside it. In the worst case, if a cell contains the same number of examples for each 
class, its purity is zero.

Considering a total of Kl classes in cell Hl , and considering that the number of examples of 
class Ci in cell Hl is given by �il , the purity of a cell is defined as:

where pil is the probability of class Ci in Hl , given by:

The estimates SHl
 of each cell are then linearly weighted and summed to produce an aver-

age purity SH , given by:

where H is the total number of cells. A previously detailed, SH is further weighted by 1

2B
 

before plotting the purity values versus resolution. The overall purity measure, i.e., the 
AUC of purity values across all cells ( SH ) versus the respective resolution (B), is bounded 
within the range [0,1] where higher values represent less overlapped domains. For less 

(42)SHl
=

√√√√( Kl

Kl − 1

) Kl∑

i=1

(
pil −

1

Kl

)2

(43)pil =
�il

∑Kl

i=1
�il

(44)SH =

H∑

l=1

SHl
⋅

nl

n
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overlapped domains, the purity is expected to increase as the number of cells increases 
with higher resolutions. However, if the domain is extremely overlapped, the purity will be 
low despite the increase of the number of cells, therefore returning a lower average purity 
value. Additionally, for less overlapped domains, the measure will increase rapidly as the 
resolution increases, contrary to data with significant class overlap.

Neighbourhood Separability
This measure is more sensitive to the shape of decision boundaries and determines, for 

each data example in a cell, its proportion of k-nearest neighbours from the same class (for 
varying values of k). For each data example xj in cell Hl , its k-nearest neighbours are found 
based on the Euclidean distance and the proportion of neighbours from the same class as xj 
is determined as pkj . This procedure is repeated for several values of k, from 1 to a maximum 
value of �il , in steps of 1 (recall that �il is the number of examples of class Ci inside cell Hl ). 
Thus, for each data example xj inside cell Hl , it is possible to plot a curve of pkj versus k and 
determine the area under the curve as �j . Then, the average neighbourhood separability of cell 
Hl can be determined as:

The neighbourhood separability across all cells is computed by a weighted sum of the pl 
values of all cells (Eq. 46) and then weighted by 1

2B
 to account for the data space resolution.

Similarly to Purity, a final curve of SNN values versus resolution is plotted and the area 
under the curve is the overall neighbourhood separability measure for a given domain, 
where higher values represent less overlapped domains.

6.5  Summarizing comments

Throughout this section we discuss the idea that class overlap is a heterogeneous problem 
with different representations. To standardise existing vortices of class overlap, we pro-
pose a novel taxonomy that associates common concepts found in related research to four 
groups of class overlap complexity measures (Fig. 4): Feature Overlap, Structural Over-
lap, Instance-Level Overlap, and Multiresolution Overlap. We show how each group meas-
ures a particular facet of class overlap and describe their representative measures in detail, 
which is a step towards providing a more complete characterisation of class overlap in real-
world domains. However, there are two topics left for discussion. One is if (and how) these 
measures of class overlap are attentive to class imbalance as well. The other regards the 
development of new measures that simultaneously account for several representations of 
class overlap. Let us start by discussing the existing body of knowledge regarding the sen-
sitivity of class overlap measures to class imbalance.

As highlighted in Fig. 4, there are some measures for which adaptations to imbalanced 
domains are discussed in the literature. Some were originally developed in the scope of 
imbalanced data ( Raug , ONB, CM, dCM, dwCM, Borderline Examples), while others 
correspond to the recently-suggested, class-wise adaptations of well-known complexity 

(45)pl =
1

nl

nl∑

j=1

�j

(46)SNN =

H∑

l=1

pl ⋅
nl

n
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measures (F2, F3, F4, N1, N2, N3, N4, T1) (Barella et al. 2021). The underlying motivation 
for these adaptations is that, since certain measures consider classes altogether, the major-
ity class tends to dominate their computation and hence they perform poorly in imbalanced 
domains (Anwar et al. 2014; Barella et al. 2018; Weng and Poon 2006). Current adapta-
tions are therefore based on evaluating the individual class complexities, i.e., decomposing 
measures into their minority and majority counterparts. As an example, consider the origi-
nal N3 measure which determines the error of a 1NN classifier. The adapted version of N3 
consists of taking the 1NN error per class. The adapted measures have shown promising 
results in estimating the difficulty of classification tasks more accurately than the origi-
nal measures for binary-classification domains (Barella et al. 2018, 2021), although this is 
still a line of ongoing research. Except for the measures discussed herein (and marked in 
Fig. 4), there are no considerations regarding the remaining in what concerns imbalanced 
domains. Naturally, in the same light of the results previously reported, we can expect a 
biased behaviour for certain measures (e.g., those that provide average values over the total 
number of examples in data). Nevertheless, others require further investigation.

The devise of adaptations and combinations of existing representations (ergo, meas-
ures) of class overlap remains an open challenge for future research. Although the pre-
sented taxonomy is insightful to associate existing measures to different class overlap rep-
resentations, each group of measures still gives emphasis to a particular facet. To provide 
a complete characterisation of the problem of class overlap for a given domain and a full 
understanding of to what extent it is harming the classification task, it is required that these 
measures are either used collectively or combined to capture several representations simul-
taneously. The idea that, in imbalanced domains, class overlap may be more thoroughly 
characterised by measures that consider multiple sources of complexity is recently touched 
upon in Pascual-Triana et al. (2021). With the development of ONB, authors explore the 
suitability of combining structural, local, and class imbalance information to provide good 
estimates for class overlap.

Although both topics are currently under research, they show that there is somewhat a 
consensus in what concerns the limitations of individual measures of class overlap, and the 
need to characterise the class overlap problem in all its dimensions, while also accounting 
for class imbalance. This is one of the biggest open challenges in the imbalanced data field 
and the reason why a unified view on the problem is necessary to put forward.

In the next section, we will review the state-of-the-art class overlap-based approaches 
applied to real-world imbalanced domains. We will show that, although under the same 
rationale of minimising class overlap, the methods often approach the problem from differ-
ent perspectives, i.e., focusing on different representations of class overlap. Also, despite 
the fact that several class overlap measures have been discussed in the literature, related 
research often fails to characterise the problem in the domains, which complicates the eval-
uation of the efficiency of the approaches, besides preventing the generation of informed 
recommendations for researchers.

7  Class overlap‑based approaches

The topic of learning from imbalanced data has been extensively studied in the past years, 
with several outstanding survey papers being recently published (Das et al. 2018; Fernán-
dez et  al. 2018d; Haixiang et  al. 2017; Kaur et  al. 2019; Krawczyk 2016). As such, the 
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characterisation of the problem of class imbalance and respective taxonomies of approaches 
and applications is quite well-established. However, few works have attempted to provide a 
global view on the problem of class overlap in imbalanced domains that summarises, cat-
egorises and compares the state-of-the-art strategies used to handle both problems simul-
taneously. Xiong et al. (2010) suggest that data in overlapping regions can be handled by 
discarding, merging, and separating schemes. In brief, the discarding scheme only learns 
from non-overlapping regions, disregarding the remaining. The merging scheme considers 
the overlapped data as a new class, whereas the separating scheme treats overlapping and 
non-overlapping regions separately, i.e., two separate models are built for each scenario. 
Most recently, Vuttipittayamongkol et al. (2020) divide class overlap methods depending 
on whether methods address all overlapping examples or just those closer to the decision 
boundaries (borderline examples).

Nevertheless, the relationship between existing class overlap approaches and class 
overlap representations remains somewhat hidden. This naturally hinders the devise of 
recommendations for researchers, i.e., it is not possible to determine which approaches 
would be best for a given domain based on its characterisation. Ultimately, this would be 
a game-changing contribution to research: guide the choice of appropriate methods or the 
development of specialised approaches based on the characteristics of the domains, going 
towards a meta-learning logic. Throughout this section, we will show that, unfortunately, 
this remains an open issue due to certain limitations found in current research, which will 
be summarised at the end of this section. However, we thoroughly analysed the existing 
class overlap-based approaches in order to associate their internal behaviour to the char-
acteristics of data they are sensitive to. With that, we propose a novel taxonomy of class 
overlap-based approaches aligned with the taxonomy of class overlap complexity measures 
presented in the previous section.

Figure 26 depicts the most common approaches to handle imbalanced and overlapped 
domains, together with the class overlap representations, information, and concepts they 
are associated to. In imbalance data learning, resampling approaches—undersampling 
and oversampling—are by far the most popular  (Santos et  al. 2018): it comes therefore 
at no surprise that they remain two of the most explored approaches when handling class 

Fig. 26  A taxonomy of methods for handling imbalanced and overlapped datasets. The scheme shows the 
different class overlap-based approaches that are analysed in this section, associating each group to com-
mon class overlap concepts and representations found in related research



 M. S. Santos et al.

1 3

Ta
bl

e 
2 

 B
en

ch
m

ar
k 

of
 c

la
ss

 o
ve

rla
p-

ba
se

d 
ap

pr
oa

ch
es

C
at

eg
or

y
A

pp
ro

ac
h

In
fo

rm
at

io
n

M
ea

su
re

s
C

om
pa

re
d 

M
et

ho
ds

U
nd

er
sa

m
pl

in
g

C
lu

sB
U

S 
†
‡
 (2

01
4)

D
en

si
ty

-b
as

ed
 c

lu
ste

rin
g

IR
SM

O
TE

D
BM

U
TE

 ‡  
(2

01
7)

D
en

si
ty

-b
as

ed
 c

lu
ste

rin
g 

G
ra

ph
-b

as
ed

IR
RO

S,
 R

U
S,

 S
M

O
TE

, B
LS

M
O

TE
 S

LS
M

O
TE

, D
B

SM
O

TE
, 

TL
 M

U
TE

D
BM

IS
T-

U
S 

(2
02

0)
D

en
si

ty
-b

as
ed

 c
lu

ste
rin

g 
G

ra
ph

-b
as

ed
IR

C
N

N
, E

N
N

, T
L,

 N
C

L,
 O

SS
 S

B
C

, C
lu

ste
rO

SS
, R

U
S,

 E
U

S 
EE

, B
C

, R
U

SB
oo

st
C

lu
ste

rO
SS

 (2
01

4)
C

lu
ste

r-b
as

ed
 (k

-m
ea

ns
) L

oc
al

 In
fo

rm
at

io
n 

(1
N

N
)

IR
O

SS
, R

U
S†

 , R
O

S,
 S

M
O

TE
, C

BO
 C

lu
st

er
O

SS
+

R
O

S 
‡

C
U

ST
 ‡  

(2
01

6)
C

lu
ste

r-b
as

ed
 (k

-m
ea

ns
) L

oc
al

 In
fo

rm
at

io
n 

(1
N

N
)

IR
RU

S,
 R

O
S,

 C
lu

sB
U

S,
 S

M
O

TE
, O

SS
O

B
U

†
 (2

01
8)

Fu
zz

y-
ba

se
d 

cl
us

te
rin

g
IR

km
U

nd
er

A
da

O
B

U
†
 (2

02
0)

Fu
zz

y-
ba

se
d 

cl
us

te
rin

g 
A

da
pt

iv
e 

th
re

sh
ol

d
IR

SM
O

TE
, B

LS
M

O
TE

, k
m

U
nd

er
 S

M
O

TE
-E

N
N

, S
M

O
TE

Ba
g 

RU
SB

oo
st,

 O
B

U
, B

oo
stO

B
U

C
le

an
in

g
M

U
TE

 (2
01

1)
Lo

ca
l I

nf
or

m
at

io
n 

(k
N

N
)

IR
B

LS
M

O
TE

, S
LS

M
O

TE
, S

M
O

TE
SM

O
TE

-I
PF

‡
 (2

01
5)

Lo
ca

l I
nf

or
m

at
io

n 
(k

N
N

) E
ns

em
bl

e-
ba

se
d 

Fi
ne

-
G

ra
in

 S
ea

rc
h

IR
SM

O
TE

, S
M

O
TE

-T
L,

 S
M

O
TE

-E
N

N
 S

LS
M

O
TE

, B
LS

-
M

O
TE

N
B

-B
as

ic
 (2

02
0)

Lo
ca

l I
nf

or
m

at
io

n 
(1

N
N

)
N

B
-T

om
ek

 (2
02

0)
Lo

ca
l I

nf
or

m
at

io
n 

(k
N

N
)

N
B-

C
om

m
 (2

02
0)

Lo
ca

l I
nf

or
m

at
io

n 
(k

N
N

)
IR

SM
O

TE
, B

LS
M

O
TE

, E
N

N
 k

m
U

nd
er

, O
B

U
N

B
-R

ec
†
 (2

02
0)

Lo
ca

l I
nf

or
m

at
io

n 
(k

N
N

) F
in

e-
G

ra
in

 S
ea

rc
h



On the joint‑effect of class imbalance and overlap: a critical…

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

C
at

eg
or

y
A

pp
ro

ac
h

In
fo

rm
at

io
n

M
ea

su
re

s
C

om
pa

re
d 

M
et

ho
ds

O
ve

rs
am

pl
in

g
M

W
M

O
TE

 ‡  
(2

01
4)

C
lu

ste
r-b

as
ed

 (h
ie

ra
rc

hi
ca

l) 
D

en
si

ty
 in

fo
rm

at
io

n 
Lo

ca
l i

nf
or

m
at

io
n 

(k
N

N
)

IR
SM

O
TE

, A
D

A
SY

N
, R

A
M

O
B

oo
st

A
SU

W
O

 ‡  
(2

01
6)

C
lu

ste
r-b

as
ed

 (h
ie

ra
rc

hi
ca

l) 
Lo

ca
l i

nf
or

m
at

io
n 

(k
N

N
) C

la
ss

ifi
ca

tio
n 

C
om

pl
ex

ity
IR

RO
S,

 S
M

O
TE

, B
LS

M
O

TE
, S

LS
M

O
TE

 k
m

U
nd

er
, C

lu
ste

rS
-

M
O

TE
, C

BO
 M

W
M

O
TE

IA
-S

U
W

O
 ‡  

(2
02

0)
C

lu
ste

r-b
as

ed
 (h

ie
ra

rc
hi

ca
l) 

Lo
ca

l i
nf

or
m

at
io

n 
(k

N
N

) C
la

ss
ifi

ca
tio

n 
C

om
pl

ex
ity

 A
da

pt
iv

e 
W

ei
gh

tin
g

IR
RO

S,
 S

M
O

TE
, B

LS
M

O
TE

, A
D

A
SY

N
 S

LS
M

O
TE

, C
lu

ste
rS

-
M

O
TE

, M
W

M
O

TE
 A

-S
U

W
O

, I
SM

O
TE

, k
m

SM
O

TE

N
I-

M
W

M
O

TE
 †‡

 
(2

02
0)

C
lu

ste
r-b

as
ed

 (h
ie

ra
rc

hi
ca

l) 
Lo

ca
l i

nf
or

m
at

io
n 

(k
N

N
) C

la
ss

ifi
ca

tio
n 

C
om

pl
ex

ity
 D

en
si

ty
 in

fo
r-

m
at

io
n

IR
RO

S,
 S

M
O

TE
, B

LS
M

O
TE

, A
D

A
SY

N
 S

LS
M

O
TE

, C
lu

ste
rS

-
M

O
TE

 M
W

M
O

TE
, A

-S
U

W
O

PA
IO

 †‡
 (2

02
0)

D
en

si
ty

-b
as

ed
 c

lu
ste

rin
g 

Lo
ca

l i
nf

or
m

at
io

n 
(k

N
N

)
IR

RO
S,

SP
ID

ER
, S

M
O

TE
, S

LS
M

O
TE

 M
W

M
O

TE
, S

M
O

M
, 

IN
O

S,
 M

D
O

 R
A

CO
G

C
C

R
  †‡

 (2
01

7)
H

yp
er

sp
he

re
 C

ov
er

ag
e

IR
SM

O
TE

, A
D

A
SY

N
, B

LS
M

O
TE

 S
M

O
TE

-T
L,

 S
M

O
TE

-
EN

N
, N

C
L

G
-S

M
O

TE
 ‡  

(2
01

9)
H

yp
er

sp
he

re
 C

ov
er

ag
e

IR
RO

S,
 S

M
O

TE

SD
PM

 †‡
 (2

01
8)

En
se

m
bl

e-
ba

se
d 

Lo
ca

l I
nf

or
m

at
io

n 
(k

N
N

) U
nd

er
-

sa
m

pl
in

g
IR

EE
, N

B
Lo

g,
 R

F,
 N

B
, S

M
O

TE
+

N
B

 R
U

S+
N

B
, D

N
C

, 
SM

O
TE

B
oo

st 
RU

SB
oo

st



 M. S. Santos et al.

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

C
at

eg
or

y
A

pp
ro

ac
h

In
fo

rm
at

io
n

M
ea

su
re

s
C

om
pa

re
d 

M
et

ho
ds

O
th

er
 A

pp
ro

ac
he

s
C

lu
A

D
-E

di
D

O
 

(2
02

0)
En

se
m

bl
e-

ba
se

d 
C

lu
ste

r-b
as

ed
 L

oc
al

 in
fo

rm
at

io
n 

(k
N

N
) O

ve
rs

am
pl

in
g

IR
 a

nd
 O

R
SM

O
TE

, S
M

O
TE

Ba
g,

 R
U

S,
 R

O
S 

RU
SB

oo
st,

 K
N

O
S,

 
D

O
V

O
, D

O
A

O
 M

D
O

, D
EC

O
C

, G
P-

EC
O

C

So
ft-

H
yb

ri
d 

†
 (2

01
5)

Re
gi

on
 S

pl
itt

in
g 

C
lu

ste
r-b

as
ed

 L
oc

al
 a

nd
 D

en
si

ty
 

in
fo

rm
at

io
n

IR
 a

nd
 F

1
SV

M
, R

B
FN

 S
V

M
/R

B
FN

:(R
O

S,
 R

U
S,

 S
M

O
TE

)

O
SM

 (2
01

8)
Re

gi
on

 S
pl

itt
in

g 
Fu

zz
y 

Lo
gi

c 
(F

uz
zy

 S
V

M
) C

os
t-

se
ns

iti
ve

 L
oc

al
 In

fo
rm

at
io

n 
(k

N
N

 a
nd

 1
N

N
)

IR
 a

nd
 O

R
SV

M
, S

V
M

+
RU

S,
 S

M
O

TE
-S

V
M

, S
D

C
 S

V
M

B
oo

st,
 F

SV
M

-
C

IL
, E

FS
V

M
 E

M
at

M
H

K
S,

 1
N

N

EV
IN

C
I (

20
19

)
Ev

ol
ut

io
na

ry
-b

as
ed

 E
ns

em
bl

e-
ba

se
d 

G
ra

ph
-b

as
ed

 
Lo

ca
l I

nf
or

m
at

io
n 

(1
N

N
)

IR
 a

nd
 N

1
SM

O
TE

B
ag

, R
U

SB
ag

, R
O

SB
ag

 A
da

bo
os

t, 
RU

SB
oo

st

EH
SO

 ‡  
(2

02
0)

Ev
ol

ut
io

na
ry

-b
as

ed
 L

oc
al

 In
fo

rm
at

io
n 

(k
N

N
) 

U
nd

er
sa

m
pl

in
g

IR
 a

nd
 O

R
RU

S,
 N

C
L,

 N
M

, I
H

T,
 R

EN
N

, A
K

N
N

 O
SS

, R
O

S,
 S

M
O

TE
, 

B
LS

M
O

TE
 A

D
A

SY
N

, S
M

O
TE

-E
N

N
, S

M
O

TE
-T

L 
R

BO
, 

SM
O

TE
-C

CA
, C

C
R

 

M
BP

-G
G

E 
(2

01
3)

H
yb

rid
 A

pp
ro

ac
h 

G
ra

ph
-b

as
ed

 C
os

t-s
en

si
tiv

e
IR

SB
P,

 M
B

P,
 S

B
P+

G
G

E,
 S

M
O

TE
, R

U
S 

SM
O

TE
+

G
G

E

B
oo

stO
B

U
 (2

02
0)

H
yb

rid
 A

pp
ro

ac
h 

Fu
zz

y-
ba

se
d 

cl
us

te
rin

g 
Lo

ca
l 

In
fo

rm
at

io
n 

(k
N

N
) O

ve
rs

am
pl

in
g 

U
nd

er
sa

m
pl

in
g

IR
SM

O
TE

, B
LS

M
O

TE
, k

m
U

nd
er

 S
M

O
TE

-E
N

N
, S

M
O

TE
-

Ba
g,

 R
U

SB
oo

st 
O

B
U

, A
da

O
B

U
†

Im
W

ei
gh

ts
 (2

01
8)

H
yb

rid
 A

pp
ro

ac
h 

C
lu

ste
r-b

as
ed

 L
oc

al
 in

fo
rm

at
io

n 
(k

N
N

) C
os

t-s
en

si
tiv

e
IR

 a
nd

 D
at

a 
Ty

po
lo

gy
RO

S,
 B

LS
M

O
TE

, A
D

A
SY

N

Fo
r e

ac
h 

ap
pr

oa
ch

 is
 id

en
tifi

ed
 it

s 
ca

te
go

ry
, t

he
 ty

pe
 o

f i
nf

or
m

at
io

n 
it 

en
co

m
pa

ss
es

, t
he

 c
on

si
de

re
d 

m
ea

su
re

s 
of

 c
la

ss
 im

ba
la

nc
e 

an
d 

cl
as

s 
ov

er
la

p,
 a

nd
 a

 b
en

ch
m

ar
k 

of
 c

om
-

pa
re

d 
m

et
ho

ds
. A

pp
ro

ac
he

s 
ar

e 
m

ar
ke

d 
de

pe
nd

in
g 

on
 w

he
th

er
 th

ey
 o

bt
ai

ne
d 

su
pe

rio
r p

er
fo

rm
an

ce
 w

ith
 re

sp
ec

t t
o 

F-
m

ea
su

re
/G

-m
ea

n 
re

su
lts

 (i
n 

bo
ld

), 
se

ns
iti

vi
ty

 re
su

lts
 ( †

 ) 
or

 A
U

C
 re

su
lts

 ( ‡
)

†
 : T

he
 a

pp
ro

ac
h 

ob
ta

in
ed

 su
pe

rio
r p

er
fo

rm
an

ce
 w

ith
 re

sp
ec

t t
o 

se
ns

iti
vi

ty
 re

su
lts

‡
 : T

he
 a

pp
ro

ac
h 

ob
ta

in
ed

 su
pe

rio
r p

er
fo

rm
an

ce
 w

ith
 re

sp
ec

t t
o 

A
U

C
 re

su
lts

.
O

R
 re

fe
rs

 to
 O

ve
rla

pp
in

g 
R

at
io

, w
hi

ch
 m

ay
 d

iff
er

 b
et

w
ee

n 
ap

pr
oa

ch
es

 (p
le

as
e 

re
fe

r t
o 

th
e 

di
sc

us
si

on
)

EU
S 

(G
ar

cí
a a

nd
 H

er
re

ra
 2

00
9)

, E
E 

(L
iu

 et
 al

. 2
00

8)
, B

C 
(L

iu
 et

 al
. 2

00
8)

, R
U

SB
oo

st 
(S

ei
ffe

rt 
et

 al
. 2

00
9)

, k
m

U
nd

er
 (Y

en
 an

d 
Le

e 2
00

9)
, S

M
O

TE
Ba

g 
(W

an
g 

an
d 

Ya
o 

20
09

), 
RA

M
O

-
Bo

os
t (

Ch
en

 e
t a

l. 
20

10
), 

Cl
us

te
r-S

M
O

TE
 (C

ie
sla

k 
et

 a
l. 

20
06

), 
IS

M
O

TE
 (C

he
n 

20
17

), 
km

SM
O

TE
 (D

ou
za

s 
et

 a
l. 

20
18

), 
IN

O
S 

(C
ao

 e
t a

l. 
20

13
), 

M
D

O
 (A

bd
i a

nd
 H

as
he

m
i 2

01
5)

, 
SM

O
M

 (Z
hu

 et
 a

l. 
20

17
), 

RA
CO

G
 (D

as
 et

 a
l. 

20
14

b)
, N

BL
og

 (M
en

zi
es

 et
 a

l. 
20

12
), 

D
N

C 
(W

an
g 

an
d 

Ya
o 

20
13

), 
SM

O
TE

Bo
os

t (
Ch

aw
la

 et
 a

l. 
20

03
), 

SD
C 

(A
kb

an
i e

t a
l. 

20
04

), 
SV

M
-

Bo
os

t (
W

an
g 

an
d 

Ja
pk

ow
ic

z 
20

10
), 

FS
V

M
-C

IL
 (B

at
uw

ita
 a

nd
 P

al
ad

e 
20

10
), 

EF
SV

M
 (F

an
 e

t a
l. 

20
17

), 
EM

at
M

H
K

S 
(Z

hu
 a

nd
 W

an
g 

20
17

), 
RU

SB
ag

 (B
ar

an
de

la
 e

t a
l. 

20
03

), 
RO

S-
Ba

g 
(W

an
g 

an
d 

Ya
o 

20
09

), 
N

M
 (M

an
i a

nd
 Z

ha
ng

 2
00

3)
, I

H
T 

(S
m

ith
 e

t a
l. 

20
14

), 
RE

N
N

 (K
ub

at
 a

nd
 M

at
w

in
 1

99
7)

, A
K

N
N

 (K
ub

at
 a

nd
 M

at
w

in
 1

99
7)

, R
BO

 (K
oz

ia
rs

ki
 e

t a
l. 

20
19

), 
SM

O
TE

-C
CA

 (Y
an

 et
 al

. 2
01

9)
, K

N
O

S 
(S

an
to

so
 et

 al
. 2

01
8)

, D
O

VO
 (G

al
ar

 et
 al

. 2
01

3)
, D

O
A

O
 (K

an
g 

et
 al

. 2
01

5)
, D

EC
O

C 
(B

i a
nd

 Z
ha

ng
 2

01
8)

, G
P-

EC
O

C 
(L

i e
t a

l. 
20

19
)



On the joint‑effect of class imbalance and overlap: a critical…

1 3

imbalance and overlap simultaneously. In addition, cleaning approaches are also frequently 
applied, either alone or in combination with undersampling and oversampling. Finally, 
recent research has also explored the use of ensembles, region splitting, evolutionary, and 
hybrid approaches. In what follows, we describe the proposed taxonomy in higher detail, 
illustrating each category with both well-established and emergent approaches studied in 
the context of imbalanced and overlapped domains. To help the reader navigate this sec-
tion, Table 2 provides an overview of the discussed class overlap-based approaches. Each 
approach is characterised in what concerns its category (according to the established tax-
onomy) and the type of information it relies on. The measures used to characterise the data 
domains in what concerns class imbalance and overlap, as well as the benchmark of com-
pared approaches used in the respective research work are also presented.

7.1  Undersampling approaches

Undersampling approaches focus on removing redundant majority examples from data and 
often involve the application of cluster-based methods, thus taking advantage of structural 
overlap information to identify and characterise overlapping regions in the domain. Based 
on the internal behaviour of methods proposed in related research, we further divided clus-
ter-based methods into three main types: density-based, neighbourhood-based and fuzzy-
based approaches.

Density-based approaches make use of information regarding the density of manifolds 
to define clusters in data and often rely on the well-known DBSCAN algorithm (Ester et al. 
1996). A recent example is ClusBUS (Das et al. 2014a), which discards majority examples 
lying on overlapping regions by using DBSCAN to find clusters that contain both minor-
ity and majority examples, and removing enough majority examples to define a vacuum 
region surrounding minority examples. As previously discussed in Sect. 6, structural over-
lap measures may observe a combination of both geometrical and graph-based properties 
(e.g., hypersphere coverage and MST), and include measures of data sparsity and density 
of manifolds. Similarly, density-based undersampling algorithms often incorporate both 
density-based and graph-based procedures. DBMUTE uses DBSCAN to define a blem-
ished graph and eliminate majority examples from the overlap region  (Bunkhumpornpat 
and Sinapiromsaran 2017). DBMIST-US handles overlapping and noisy majority examples 
through a combination of DBSCAN clustering with a minimum spanning tree (Guzmán-
Ponce et al. 2020).

When the clustering algorithm is k-means, the undersampling approaches rely mostly 
on neighbourhood-based information (distances between examples). In the context of 
imbalanced and overlapped domains, k-means is used to define the major core concepts 
in data, whereas complicated or redundant examples are further removed from the training 
set. ClusterOSS (Barella et al. 2014) is an extension of OSS (One-Sided-Selection Kubat 
and Matwin 1997) that uses k-means to choose the candidate majority examples to start the 
OSS algorithm. Afterwards, borderline and noisy majority examples are removed using 
Tomek links  (Tomek 1976). In turn, CUST first removes borderline majority examples 
using Tomek links and the remaining redundant and noisy majority examples are elimi-
nated after k-means analysis (Sowah et al. 2016).

Finally, some approaches consider soft-clustering algorithms to look for (and elimi-
nate) overlapping majority examples. This is the case of OBU, which uses Fuzzy C-means 
to establish class-membership degrees to majority data examples  (Vuttipittayamongkol 
et  al. 2018). Indecisive examples (those with unclear membership) are considered to be 
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overlapped and are therefore removed. AdaOBU further incorporates an adaptive elimi-
nation threshold in OBU allowing its generalisation to datasets with varying overlap 
degrees (Vuttipittayamongkol and Elyan 2020a).

7.2  Cleaning approaches

Cleaning approaches focus on cleaning the training set by eliminating redundant and/or 
harmful examples for classification. They may remove examples only from the majority or 
minority classes, or both (in a two-classification problem). In imbalanced and overlapped 
domains, however, cleaning approaches are often used as undersampling approaches, since 
the eliminated examples are often exclusively from the majority class.

All cleaning approaches consider local information, i.e., they commonly rely on 
instance-level overlap. Some focus on cleaning complicated examples near the decision 
boundaries, thus analysing local data characteristics (data typology or instance hard-
ness). Accordingly, they determine the safeness level of individual examples to define 
which should be removed (e.g., evaluating 1NN rules, kDN rules or searching for border-
line examples). Others offer a more deep cleaning throughout the entire domain, handling 
examples that may be located far from the class borders.

Let us start with more seminal cleaning approaches, which were traditionally conceived 
to eliminate harmful examples irrespective of their class, and focused mostly on border-
line examples. Tomek Links (TL) (Tomek 1976) define a pair of examples from different 
classes that are each other’s closest neighbours and can be used as a cleaning approach 
(removing both points) or undersampling approach (removing just the majority point). The 
Condensed Nearest Neighbour Rule (CNN) (Hart 1968) eliminates redundant examples 
by keeping only a consistent subset of examples, i.e., those from which a 1-nearest neigh-
bour rule would be able to correctly classify the remaining. Similarly, CNN can be used 
as an undersampling approach (US-CNN) by keeping all minority examples and produc-
ing a subset of majority examples. The One-Sided-Selection (OSS) technique Kubat and 
Matwin 1997) can alleviate the problem of class overlap in imbalanced domains by com-
bining the US-CNN and the concept of TL to remove redundant, borderline, and noisy 
majority class examples in data. The Edited Nearest Neighbour (ENN) rule  (Wilson 
1972) removes data examples that are misclassified by their k-nearest neighbours (typi-
cally k = 3 ). It can be used as an undersampling method by eliminating only majority class 
examples. Similarly, the Majority Undersampling Technique (MUTE) (Bunkhumporn-
pat et al. 2011) eliminates majority examples whose k-neighbourhood is entirely from the 
minority class and can therefore be considered a cleaning approach as well. Finally, another 
well-known cleaning approach is the Neighbourhood Cleaning Rule (NCL)  (Laurik-
kala 2001), which is similar to OSS, although it emphasises more the data cleaning pro-
cedure by using ENN. These are some well-established cleaning approaches that can be 
used as (or incorporated in) undersampling approaches, or even coupled with oversampling 
approaches (e.g., SMOTE-TL and SMOTE-ENN Batista et al. 2004). Cleaning procedures 
have proven to enhance classification results by removing overlapped examples that existed 
in the original training dataset or created during the synthetisation of new examples (San-
tos et al. 2018).

Overall, the above approaches aim to clean complicated examples near the class bounda-
ries, therefore focusing mostly on borderline regions. However, as discussed throughout the 
paper, despite the fact that borderline examples are a frequent representation of class over-
lap, there are other types of examples scattered throughout the domain that also contribute 
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to class overlap. Most recently, Vuttipittayamongkol and Elyan (2020b) proposed a set of 
cleaning approaches (used for undersampling) that focus on providing a deeper level of 
elimination of harmful examples. They are all based on neighbourhood analysis (instance-
level overlap) and therefore identified with the NB- (i.e., “neighbourhood based”) prefix. 
The Basic Neighbourhood Search (NB-Basic) removes any majority example that has a 
minority neighbour. The Modified Tomek Link Search (NB-Tomek) removes any major-
ity example with a minority neighbour, only if it appears within the k-neighbourhood of 
that minority example. In the Common Nearest Neighbours Search (NB-Comm), the 
common majority nearest neighbours of any two minority examples are identified as over-
lapped examples and removed. Finally, the Recursive Search (NB-Rec) combines local 
information with multiresolution (fine grain search) information. It starts with the majority 
examples to be eliminated by NB-Comm and uses them as secondary queries for NB-Rec. 
The majority examples that are the common nearest neighbours of any pair of these sec-
ondary queries are then eliminated as well. By introducing this extension, a finer grain-
search criteria is provided and as a result, a higher number of overlapped majority exam-
ples is detected and removed.

7.3  Oversampling approaches

Oversampling approaches generally focus on generating new minority examples to mitigate 
the problem of class imbalance. In overlapped domains, the main concern of oversampling 
approaches is to increase the representation of minority examples in specific regions of the 
data space. For that reason, they often rely on instance-level overlap (local information) to 
look for candidate examples to guide the synthetisation process.

By far, the most well-known oversampling approach is the Synthetic Minority Over-
sampling Technique (SMOTE)  (Chawla et  al. 2002). Although it successfully balances 
the data domain, SMOTE has no particular mechanism to alleviate class overlap and may 
even generate overlapping examples if the oversampling procedure occurs near the class 
borders or includes noisy examples located within the majority class (the problem of over-
generalisation  Fernández et  al. 2018e). However, over the years, several modifications 
of SMOTE have been proposed  (Kovács 2019), more and more tailored to certain char-
acteristics of the data domain, including class overlap. Some approaches focus either on 
improving the representation of examples in the borderline regions between classes (Bor-
derline-SMOTE), or in safe regions of the data space (Safe-Level SMOTE) (Bunkhum-
pornpat et al. 2009; Han et al. 2005). Other approaches search the entire domain and give 
a higher weight to examples that are harder to learn and should therefore be oversampled 
more often (ADASYN)  (He et  al. 2008). To do so, they mostly consider instance-hard-
ness and data typology information, namely variations of the kDN measure. Also consid-
ering instance-hardness information are the approaches that incorporate cleaning proce-
dures. These often couple SMOTE with some of the cleaning procedures discussed above, 
namely SMOTE-ENN, SMOTE-TL (Batista et al. 2004), and SMOTE-IPF (Sáez et al. 
2015). SPIDER  (Stefanowski and Wilk 2008) is another example, which couples over-
sampling with deletion of noisy examples. In this case, SPIDER also redirects the over-
sampling towards either only borderline or both borderline and safe regions, depending 
on the chosen amplification. Although there are different variations, these approaches are 
based on the same underlying information that considers the kDN of each minority exam-
ple to decide on their probability of oversampling and/or their removal from the dataset. 
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Despite these approaches generally improve the performance of classifiers over imbalanced 
and overlapped domains, they have well-known handicaps  (Santos et  al. 2018). Several 
SMOTE-like methods, by using the same interpolation as SMOTE, are prone to the same 
problem of overgeneralisation, and may generate examples in overlapping areas. Also, 
in some cases, if the probability of examples to be oversampled is the same across the 
domain, some redundant minority examples might be oversampled unnecessarily. Finally, 
noisy minority regions can also be oversampled and remain even after the cleaning proce-
dure. These handicaps occur because the above approaches are focused only on analysing 
local information, disregarding the structure of both minority and majority classes. Thus, 
recent research is starting to explore approaches that also consider other types of informa-
tion, namely structural information.

As previously discussed, one popular way to consider structural information of the 
domain is via clustering approaches. To that regard, AHC (Cohen et al. 2006), CBO (Jo 
and Japkowicz 2004), DBSMOTE (Bunkhumpornpat et al. 2012), and MWMOTE (Barua 
et  al. 2014) are popular cluster-based approaches that attend simultaneously to struc-
tural and instance-level overlap information on the domain. To this regard, MWMOTE 
has proven to be a strong competitor over traditional oversampling approaches, due to its 
further ability to aggregate other types of operations (clustering, cleaning, and adaptive 
weighting of examples) (Santos et al. 2018).

Similarly, other recent oversampling algorithms are starting to combine different types 
of information (structural overlap, data typology, and instance hardness) and operations 
(clustering and cleaning). ASUWO synthesises more examples in the sub-clusters with 
higher misclassification errors (Nekooeimehr and Lai-Yuen 2016). IA-SUWO (Wei et al. 
2020a) is an extension of ASUWO that considers a different weighting scheme for minor-
ity examples (least squares support numerical spectrum values) and the k-information near-
est neighbour method in the oversampling stage. NI-MWMOTE (a MWMOTE extension) 
starts by adaptively removing noise (Wei et al. 2020b). Then, it uses AHC to segment the 
minority class examples and adaptively determine the number of examples to synthesise 
in each sub-cluster using misclassification error as a measure of cluster complexity. The 
oversampling is performed using MWMOTE. An interesting detail of NI-MWMOTE is 
that it also uses information regarding the density of manifolds (neighbours’ density) to 
distinguish between suspected and real noise. Another example is PAIO, which divides 
the minority examples using a density-based clustering method similar to DBSCAN 
(NBDOS), and then defines different interpolation strategies for each type of minority 
examples  (Zhu et  al. 2020). In this case, rather than the standard data typology defined 
by k-neighbourhood analysis, PAIO uses NBDOS to distinguish between inland examples, 
borderline examples, and trapped examples.

There are also recent approaches where clustering is more aligned with the concept 
of hypersphere coverage. CCR  combines cleaning with oversampling by introducing a 
energy-based ball coverage strategy (Koziarski and Wozniak 2017). Each minority exam-
ple has an associated sphere and energy budget, and the sphere is expanded until there is 
no available energy. When the expansion can no longer proceed, the majority examples are 
pushed out of the spheres (though not eliminated). The oversampling stage relies on the 
spheres produced during the cleaning stage. For every minority example, new examples 
are generated within its sphere, where the proportion of examples to generate is inversely 
proportional to the radius of its sphere. G-SMOTE replaces the interpolation method used 
by SMOTE to define a flexible geometric region (a truncated hyperspheroid) where the 
synthetisation of new examples occurs (Douzas and Bacao 2019). A minority example and 
one of its closest nearest minority neighbours are used to define a unit hypersphere where 
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the new synthetic example will be generated. Through a set of geometric hyperparameters, 
the hypersphere can be transformed to represent different configurations (hyperspheroids) 
and parameters can be tuned for optimal performance.

Overall, we are witnessing a shift towards approaches that combine multiple sources of 
information (local and structural information) and couple different operations to achieve 
optimal results. The main objective is that new approaches address the existing limitations 
of their predecessors, while increasingly adapting to the characteristics of the domains.

7.4  Other approaches

Undersampling, oversampling, and cleaning approaches are by far the most common in the 
field. Herein, we discuss other emergent approaches to handle imbalanced and overlapped 
domains. These are based on different paradigms, namely Ensembles, Region Splitting, 
Evolutionary and Hybrid Approaches.

Ensembles are based on the combination of different classifiers, called base classi-
fiers. Each base classifier is trained over the data domain and the individual predictions 
are combined to produce the final decision. The model resulting from that aggregation is 
the ensemble, which is then used to classify new data examples (Wozniak et al. 2014). In 
imbalanced learning, popular ensembles are Boosting (commonly AdaBoost) (Freund and 
Schapire 1997; Friedman et  al. 2000) and Bagging  (Breiman 1996). However, the tradi-
tional use of ensembles (simply combining classifiers) hardly solves the class imbalance 
problem by itself, let alone handle both imbalanced and overlapped domains  (Fernández 
et al. 2018b). On contrary, ensembles are commonly coupled with resampling (undersam-
pling or oversampling), and cleaning strategies, in order to adapt to the peculiarities of the 
domains.

Chen et al. (2018) produce a software defect prediction model (SDPM) that combines 
class overlap reduction and ensemble imbalance learning. First, NCL cleaning is used to 
remove the overlapping examples. Then, the data is randomly undersampled several times 
to produce different subsets that are trained by different classifiers. The final classifica-
tion model is built by assembling the base classifiers through the AdaBoost mechanism. 
CluAD-EdiDO  (Chen et  al. 2021) was developed to handle multi-class imbalanced and 
overlapped datasets. First, a clustering-based adaptive decomposition is applied to generate 
an adaptive number of clusters. Then, an editing-based diversified oversampling method is 
used to address class imbalance and overlapping in different clusters. For the overlapping 
problem, a cleaning technique is used (removing examples with complicated neighbour-
hoods) whereas the class imbalance problem is alleviated by SMOTE or DKNOS (Chen 
et al. 2021; Santoso et al. 2018), depending on the type of example. Finally, an ensemble 
learning framework is used to select the best classification algorithm for each cluster.

Region Splitting approaches (same as separating scheme approaches Xiong et al. 2010) 
separate the data domain into non-overlapping and overlapping regions (or safe and over-
lapping regions). Then, each region is handled independently, by different classifiers or 
using different parametrisations of the same classifier (e.g., different k values in kNN, dif-
ferent SVM hyperparameters) (Tang et al. 2010; Tang and Gao 2007).

In the last couple of years, this “divide-and-conquer” strategy has been popular in 
imbalanced and overlapped domains. Soft-Hybrid  (Vorraboot et  al. 2015) divides the 
data domain into non-overlapped, borderline, and overlapped regions using the modified 
Hausdorff distance  (Huttenlocher et  al. 1993), Radial Basis Function Networks (RBFN), 
and k-means. After the boundaries of each region are found, DBSCAN is applied to the 
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borderline regions, whereas RBFNs are considered for the remaining. OSM (Lee and Kim 
2018) separates the data space into soft and hard overlap regions. Soft-overlap regions 
are classified using the decision boundary of the OSM classifier (a modified fuzzy SVM), 
whereas hard-overlap regions are classified using 1NN. An important feature of OSM is the 
integration of instance-level overlap (defined using kNN) and global information regard-
ing class imbalance (via the Different Error Cost algorithm Batuwita and Palade 2010) to 
produce overlap-sensitive costs (weights) that are further incorporated in its optimisation 
function.

Evolutionary Algorithms (EAs) are nature-inspired solutions, often associated to bio-
logical processes, such as reproduction, mutation, and recombination (Slowik and Kwas-
nicka 2020). The process of finding an optimal solution is based on a natural selection 
mechanism: the weakest solutions are eliminated whereas the strongest are retained in the 
subsequent evolutions. In imbalanced and overlapped domains, EAs are used to select a 
representative set of examples from the training set that simultaneously minimise the 
imbalance ratio, improve the representation of the minority class in overlap regions, and 
avoid information loss.

EVINCI  (Fernandes and de Carvalho 2019) uses a multi-objective evolutionary algo-
rithm (NSGA-II  Deb et  al. 2002) to selectively reduce the concentration of redundant 
majority examples in the overlapping areas, thus improving the representation of minority 
examples in these areas. EHSO (Zhu et al. 2020) finds overlapping regions by analysing 
the local neighbourhood of each majority example. If a given majority example has at least 
one minority class neighbour, then it is considered an overlapping example. Then, overlap-
ping majority examples are removed in a way that the decision boundary between classes is 
maximised while preserving the original data information as much as possible through the 
use of CHC evolutionary algorithm (Eshelman 1991).

Finally, Hybrid approaches may aggregate a series of features from the previous meth-
ods. As discussed throughout this section, several of the listed approaches can be con-
sidered an hybridisation of others. For instance, certain oversampling approaches have a 
data cleaning component (e.g., SMOTE-TL), while ensembles, region splitting and EA 
approaches are often coupled with resampling (oversampling, undersampling), and clean-
ing techniques. Herein, we highlight recent hybrid approaches explored in the context of 
imbalanced and overlapped domains.

MBP-GGE (Alejo et al. 2013) uses a modified back-propagation multilayer perceptron 
to improve the visibility of the minority class during the training process. Additionally, 
it eliminates majority examples in overlapping regions using a the Gabriel Graph Edit-
ing technique (GGE). BoostOBU improves the detection of majority class examples in 
the overlapping region, reducing excessive elimination  (Vuttipittayamongkol and Elyan 
2020a). First, it applies Borderline-SMOTE to emphasize the minority class borders. 
Then, AdaOBU is applied. ImWeights (Lango et al. 2018) combines structural and local 
information to preprocess imbalanced data by simultaneous clustering and categorising 
minority examples. First, it uses ImGrid clustering (Lango et al. 2017) to produce a grid 
of cells containing information on the types of minority examples and existing minority 
sub-clusters. Then, examples are weighted according to both their safety and their distance 
to neighbouring minority clusters, using a gravity concept. The final weights can then be 
incorporated into the learning process of classifiers.
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7.5  Summarising comments

Throughout the previous sections, we have carried out a thorough review of the state-of-
the-art class overlap-based approaches used in imbalanced domains. Additionally, we pro-
posed a new taxonomy of methods that resonates with the representations of class overlap 
they are associated to. Overall, it is possible to identify some trends regarding class over-
lap-based methods, which we summarise in what follows.

Undersampling approaches are more prone to consider structural information, via 
clustering and graph-based approaches. These strategies are used to establish the regions 
of interest of the data domains (core concepts) and discard redundant and overlapped 
examples.

Alternatively, cleaning and oversampling approaches prioritise local information, mostly 
evaluating instance-level overlap. In cleaning approaches, the value of k determines the 
depth of the cleaning procedure (either addressing borderline regions or the entire domain). 
To this regard, multiresolution information (fine-grain search) has also been explored suc-
cessfully to recursively remove harmful examples.

Oversampling is increasingly moving towards parametrised approaches that adapt the 
generation of new examples to the characteristics of data. There is also some concern with 
the generation of examples that are both informative and diverse (e.g., PAIO, G-SMOTE). 
This allows the generation process to cover more regions of the data space and alleviate the 
structural complexity of datasets to some extent. Oversampling approaches therefore seem 
more flexible, but may require a large number of user-defined parameters, for which there 
is not yet an established relationship with data characteristics.

Finally, is not uncommon for approaches to share some paradigms (e.g., local, struc-
tural, and density information, fuzzy logic, and cost-sensitive strategies). This goes 
towards the idea that class overlap has different vortices of complexity, and addressing 
them altogether could potentially improve results. Also, there is a considerably lower 
number of approaches developed within the scope of ensembles, evolutionary, region 
splitting, and hybrid approaches, which may be due to the lack of current knowledge 
on the joint-effect of class imbalance and overlap on different learning paradigms. This 
motivates the need to put forward some insights regarding the footprints of different 
families of classifiers, as we have performed in Sect. 4.

Nevertheless, as stated at the introduction of this section, it is still premature to 
derive recommendations for researchers regarding class overlap-based methods on the 
basis of related research. On that note, Table 2 provides an overview of class overlap-
based approaches, referring to the proposed taxonomy, the information considered 
by each approach, the type of data characterisation provided (i.e., whether both class 
imbalance and overlap are measured and how), and the benchmark of methods used for 
comparison.

Let us first discern why it is not possible to support the application of one approach (or 
category of approaches) over the others from a theoretical point of view, i.e., based on the 
internal behaviour of approaches. First, despite the extraordinary flexibility of oversam-
pling methods, the generation of synthetic examples becomes a more complicated task in 
overlapped domains due to the risk of further exacerbating class overlap, i.e., generating 
examples in problematic regions. This may be been attenuated to some extent by the devel-
opment of more refined approaches, but at the cost of increasing computational complex-
ity and interpretability (too many user-defined parameter to tune). Secondly, the advan-
tage of oversampling techniques due to their ability of considering the inner structure of 
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data  (García et  al. 2020) may not hold for imbalanced and overlapped domains. Indeed, 
most recent undersampling and cleaning approaches also comprise structural and local 
information of the domains and have proven to surpass well-established oversampling algo-
rithms (Table 2). Finally, there are obvious advantages in using other types of approaches, 
such as the incorporation of data complexity and classification performance in multi-objec-
tive evolutionary approaches, or the combination of multiple reasoning paradigms when 
using ensembles.

There are further limitations found in current research that make it impossible to pro-
vide an evidence-based recommendation of strategies to handle imbalanced and overlapped 
domains. Let us conclude this section by discussing the most important.

For the most part, the comparison of class overlap-based methods remains limited to 
well-established approaches (e.g., ROS, RUS, SMOTE, Safe-Level-SMOTE, Borderline-
SMOTE) which have been frequently outperformed. It is also not uncommon to find that 
some class overlap-based approaches are compared with their analogous class imbalance/
distribution-based approaches, rather than approaches developed for the same purpose 
(i.e., handling both class imbalance and overlap). Thus, it would be informative to com-
pare approaches of the same category (e.g., DBMIST-US versus AdaOBU), as well as 
approaches of different categories (e.g., DBMIST-US, NB-Comm, and NI-MWMOTE).

Furthermore, despite many methods are being proposed to overcome class overlap, 
there is a clear lack of information on how datasets are affected by this problem, i.e., only 
a few works provide a characterisation of class overlap. In fact, in most of the related 
work, the used datasets are not characterised beyond their number of examples, features, 
and imbalance ratio (Table 2). In terms of improvements with respect to class overlap, the 
approaches are evaluated from a theoretical perspective, according to their inner behaviour 
and the effects of their application on classification performance, and without real empiri-
cal validation. It is suggested that class overlap is alleviated since the classification results 
improve, although no class overlap measures are analysed to support such claim. Hence, 
it would be crucial to evaluate class overlap measures before and after the application of 
methods to fully characterise their ability to solve the problem and perform a fair compari-
son between approaches.

Finally, since no standard measure of class overlap is yet established, related research 
resorts to different measures to characterise the domains, similarly to what was observed 
for seminal work on synthetic datasets (Sect.  2). Some works refer to specific measures 
(F1, N1, or data typology), while others refer to a generic Overlapping Ratio (OR), which 
is based on different variations of instance-level overlap measures. Beyond not using a 
standard measurement of class overlap, related work is in fact focusing on distinct vorti-
ces of class overlap, by using measures that capture different dimensions of the problem. 
Again, it becomes clear that there is much to be explored regarding the joint-effect of class 
imbalance and overlap, and why a unified view on the problem is necessary for perceptive 
advances in the field.

8  Open challenges

Class overlap is currently one of the major difficulty factors affecting classification per-
formance in imbalance domains. Although previous research was able to establish some 
insights regarding the joint-impact of class imbalance and overlap on classification perfor-
mance, the critical analysis presented in this work shows that there is still a lot to uncover. 
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As discussed throughout Sect. 5, seminal work on synthetic data suffered from three major 
shortcomings, which have not yet been completely solved for real-world domains (as dis-
cussed in Sects. 6 and 7):

Class overlap is not mathematically well-established:
Contrary to class imbalance, there is not a well-established formulation and measure-
ment of class overlap for real-world domains, despite the fact that several data complex-
ity measures have been discussed throughout the years. This leads to the lack of char-
acterisation of class overlap across recent research and prevents a deeper analysis and 
comparison of proposed approaches.
Class overlap assumes different representations:
Due to the lack of a standard measurement of class overlap, related research on real-
world domains uses different measures that may be focusing on distinct vortices of the 
problem, which further complicates the comparison between approaches. Neverthe-
less, it is possible to associate the underlying principles of existing class overlap-based 
approaches to the class overlap representations they are sensitive to. Thoroughly charac-
terising class overlap in real-world domains would be instrumental to guide the choice 
of appropriate approaches and the development of specialised methods.
The class overlap degree does not take other factors into account:
Recent advances in the field show that there is an increasing interest in the study of class 
overlap measures that account for other characteristics of data, especially class imbal-
ance (Barella et al. 2018, 2021). Some well-established measures have recently proved 
to be biased indicators in the presence of class imbalance, and consequently new adap-
tations are starting to emerge. Beyond class imbalance, it seems that future research will 
gravitate more and more around the idea that class overlap comprises multiple sources 
of complexity, and that new measures need to account for its heterogeneous nature (Pas-
cual-Triana et al. 2021).

In this work, we provide a comprehensive and unique view on the joint-effect of class 
imbalance and overlap, and discuss new perspectives in light of the limitations found in 
related work. In sum, the research community needs to move towards a unified view of the 
problem of class overlap in imbalanced domains regarding three main topics: 

1. Representations of class overlap:
  It is important that the research community comes together in establishing important 

concepts associated with class overlap and defining the types of degradation they are 
associated to, i.e., their impact on classification performance. To this regard, the ideas 
explored in this work regarding distinct representations of class overlap aim to start the 
discussion among researchers. Following directions should be taken in order to fully 
understand the problem of class overlap in real-world domains:

• The study of public repositories (e.g., UCI,4 Kaggle,5 KEEL,6 OpenML7) in what 
concerns the analysis of data intrinsic characteristics would be an important con-

4 https:// archi ve. ics. uci. edu.
5 https:// www. kaggle. com.
6 http:// keel. es.
7 https:// www. openml. org.

https://archive.ics.uci.edu
https://www.kaggle.com
http://keel.es
https://www.openml.org
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tribution to future research. With respect to the problem of class overlap, the tax-
onomy provided in Sect.  6 allows to group datasets depending on their dominant 
overlap representation. Accordingly, some domains may be conceptually inter-
twined (structural overlap), whereas others may be mostly affected by complicated 
examples (referring to instance-level overlap). We are currently conducting a large 
experimental study over imbalanced and overlapped datasets, focusing on distinct 
representations of class overlap and the ability of the identified groups of class 
overlap complexity measures to effectively characterise them. Also with respect to 
the established representations of class overlap, it would be interesting to study the 
effect of each type of degradation (and their combination) on the performance of 
classifiers with distinct learning paradigms.

• The enhancement of existing repositories with artificial datasets (or modification of 
real-world datasets via data morphing Correia et al. 2019; Sáez et al. 2019 or evolu-
tionary algorithms França et al. 2020; Macià and Bernadó-Mansilla 2014; de Melo 
and Lorena 2018; Muñoz et al. 2018) is also a possibility for future research. In such 
a way, the diversity of current repositories can be improved by tailoring the new 
datasets to specific sources and ranges of data complexity (e.g., introducing specific 
vortices of class overlap, more complex data structures, and class skews).

• In the scope of artificial data generation, we recommend the multidimensional data 
generator described in Wojciechowski and Wilk (2017), for which we provide the 
documentation in English so that more researchers are able to understand and con-
figure it. Additionally, we include our example collection of generated artificial 
datasets, as well as visualisation modules for data typology.8 We welcome other 
researchers to contribute with their own research data in order to move towards the 
creation of a representative repository of data complexity factors, beyond imbal-
anced and overlapped datasets.

2. Characterisation and quantification of class overlap:
  Future research should keep moving towards the definition of measures with broader 

points of view, i.e., that are able to combine different representations of class overlap and 
consider other factors, mainly class imbalance. On that note, the discussion presented 
in Sect. 6 can serve as stepping stone. It provides an overview of existing class overlap 
measures and the class overlap representations they are associated to, the type of insights 
they provide, and whether they consider additional complications (e.g., class imbalance). 
The following directions may guide future researchers towards a better insight into the 
characterisation of the class overlap problem in imbalanced domains:

• Acknowledging class overlap as a heterogeneous concept, the development of new 
measures that combine several sources of complexity/information is perhaps the 
most pressing topic for future research. To this point, existing complexity meas-
ures focus on assessing individual properties of data, whereas real-world domains 
require more perceptive and flexible sets of measures. In that regard, our proposed 
taxonomy may be a starting point to the exploration of measures with broader points 
of view, namely in what concerns the combination of class overlap representations 
and associated insights.

8 https:// github. com/ miria mspsa ntos/ datag enera tor.

https://github.com/miriamspsantos/datagenerator
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• Beyond the measures identified in Fig. 4 and highlighted in Sect. 6.5, which have 
been designed or adapted to account for class imbalance, the remaining should be 
further investigated in imbalanced domains.

• The development of approaches to assess other learning tasks other than binary-
classification problems, namely multi-class domains, also remains a topic for 
future research. Most class overlap measures are studied over binary-classification 
domains, and current adaptations to class imbalance (i.e., class decomposition) may 
not be adequate to the evaluation of multi-class problems (Chen et al. 2021; Galar 
et al. 2015; Oh 2011; Sáez et al. 2019).

3. Benchmark of approaches for imbalanced and overlapped domains:
  It would be important to provide a benchmark of approaches that simultaneously han-

dle class imbalance and overlap, in light of the ideas discussed throughout the paper. It 
is crucial to compare state-of-the-art approaches with each other, rather than with well-
established methods. Also, a more insightful characterisation of datasets is necessary. 
It is fundamental to fully characterise the problem of class overlap in the domains, so 
that improvements introduced by the approaches are more profoundly assessed. Also, 
the characterisation of domains is essential to infer on the behaviour of approaches with 
distinct underlying mechanisms. To this regard, the summary of existing benchmarks 
and the taxonomy proposed in Sect. 7 is a good starting direction. The development of 
new approaches for handling imbalanced and overlapped domains may take into con-
sideration the following directions:

• Future research should evaluate new proposed approaches against emergent meth-
ods developed during recent years, rather than limiting the analysis to well-estab-
lished approaches. It is also important to consider a deeper characterisation of data-
sets, beyond the number of examples, features, and imbalance ratio. The same is 
true regarding the standardisation of performance metrics. These aspects are crucial 
to guarantee a fair evaluation and comparison of approaches.

• A large number of class overlap-based approaches is based on the evaluation of 
complicated examples (e.g., borderline, noisy examples), mostly relying on the 
assessment of instance-level overlap. New studies in the field should explore other 
vortices of class overlap simultaneously, to produce more robust solutions.

• Future work should consider sharing the source code and obtained results of pro-
posed approaches, in order to guarantee the reproducibility of research results. 
Regarding imbalanced and overlapped domains, we provide a collection of related 
resources (data and code), which researchers may consider in future experiments.9 
Additionally, we provide an extended Python library—Python Class Overlap 
Library (pycol)10—comprising the class overlap complexity measures discussed 
in Sect. 6, to encourage a more comprehensive study of the problem of class over-
lap.

Addressing these avenues would provide a renewed and improved view on the problem, 
ultimately leading to important advances in the field.

9 https:// github. com/ miria mspsa ntos/ open- source- imbal ance- overl ap.
10 https:// github. com/ miria mspsa ntos/ pycol.

https://github.com/miriamspsantos/open-source-imbalance-overlap
https://github.com/miriamspsantos/pycol
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9  Conclusions

In this work, we address the joint-effect of class imbalance and overlap in classification 
tasks, from precursor work to most emergent approaches, showing that their combination 
is still not completely understood. Accordingly, the paper may be divided into two main 
parts.

First, we start by discussing the insights derived from previous work on the topic, 
as well as existing limitations. We focus particularly on the analysis of some neglected, 
although important, aspects left undiscussed in seminal research, namely (1) the influence 
of intrinsic data characteristics (data decomposition, data structure, data dimensionality, 
data typology) on the classification performance for imbalanced and overlapped domains, 
and (2) the characterisation of the footprints of classifiers with distinct learning biases in 
this context. The analysis of related research culminated in the identification of limitations 
regarding the characterisation of the problem of class overlap in real-world domains and 
finally, to the acknowledgement of class overlap as a heterogeneous concept, comprising 
multiple sources of complexity.

Accordingly, we move towards the second part of this work, discussing the key concepts 
associated to the identifiability and quantification of class overlap, and the most recent 
approaches to address the problem in real-world domains. In that regard, we first propose 
a novel taxonomy of class overlap complexity measures, comprising four main class over-
lap representations: Feature Overlap, Structural Overlap, Instance-Level Overlap, and Mul-
tiresolution Overlap. A comprehensive set of complexity measures associated with class 
overlap is thoroughly reviewed, and each measure is included in one of the established 
groups, depending on which representation it is able to capture. Then, the most emergent 
class overlap-based approaches in imbalanced domains are analysed following the same 
perspective: we further present a taxonomy of class overlap-based approaches associating 
their underlying behaviour to the class overlap representations they are attentive to. In other 
words, the taxonomy of class overlap-based approaches is aligned with the established tax-
onomy of class overlap complexity measures.

In sum, this work provides a global and unique view on the joint-problem of class 
imbalance and overlap, discussing important concepts from related research, exploring 
new perspectives in light of the limitations found, and establishing key insights that may 
hopefully encourage future researchers to move towards a unified view on the problem and 
inspire the development of novel approaches that account for the peculiarities of imbal-
anced and overlapped domains.
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